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Canonical Projector Techniques for Analyzing Descriptor Systems 
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Abstract: Physical systems are often naturally formulated as descriptor systems (DSs) which form a 

superset of the more restrictive standard state spaces. The analysis of a DS, however, is complicated by 

the algebraic coupling between its proper and improper subsystems. The recently emerging canonical 

projector technique, stemming from iterative matrix chain construction, provides a theoretically sound 

and numerically effective way to completely decouple these subsystems and largely facilitates the 

reuse or adaptation of standard state space techniques for DS analysis. Nonetheless, results concerning 

canonical projectors are scattered and their potential use is currently less appreciated. The objectives of 

this paper are twofold: i) It serves as a tutorial that collects distributed results about canonical projec-

tors and presents them in a coherent manner; and more than just a tutorial, it elaborates and provides 

new/elegant/corrected proofs to some fundamental properties of canonical projectors. An iterative pro-

cedure for canonical projector construction, lacking in the literature, is also described. ii) Obvious ap-

plications, including some latest development, of projector techniques in practical circuit design prob-

lems are succinctly illustrated. By creating a self-contained repository of important canonical projector 

theories, it is hoped that more interest will be drawn and efficient numerical implementations will fol-

low. 
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1. INTRODUCTION 

 

Modeling and simulation tools have become an 

indispensable part of modern electronic design 

automation (EDA) due to the ever-increasing size and 

complexity of systems. Fast and accurate modeling and 

simulation of, for instance, on-chip circuit components 

(e.g., wires, vias, pin packages and devices), while 

preserving important physical properties (e.g., causality, 

stability and passivity), are critical for verifying signal 

integrity and ensuring circuit functionality, e.g., [1-6]. 

These on-chip elements, modeled through discretization 

of partial differential equations (PDEs) or electrical 

modeling techniques such as modified nodal analysis 

(MNA) [6], are naturally cast as differential algebraic 

equations (DAEs) known also as singular or descriptor 

systems (DSs), e.g., [7-14]. Specifically, DSs represent a 

bigger class with much higher modeling capability 

compared to the more restrictive standard state space 

systems. For example, algebraic equations like Kirchhoff’s 

laws or controlled voltage/current sources are readily 

described by DSs (e.g., [6]) but not representable as 

standard state spaces. Even when a DS is reducible to a 

standard state space, it is often desirable to work directly 

in the DS format due to the computation-friendly 

structural stamps (e.g., sparse or banded matrices) arising 

from circuit extraction, e.g., [2,6].  

The possible presence of both proper and improper 

parts (also respectively called the slow and fast 

subsystems [15,16], or non-impulsive and impulsive 

subsystems) of a general DS constitutes a major source 

of numerical difficulties in decoupling or analyzing them 

[1]. To illustrate, Fig. 1 shows an index-2 (see definition 

in Section 2.1) circuit DS where the system matrices are 

already in their decoupled form [viz. E and A in (2.1) and 

(3)]. Simple circuit analysis shows that for t≥ 0, with 

t = 0– denoting the instance just before time zero, the 
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Fig. 1. An illustrative index-2 DS system where u(t) ≡ 0.
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proper part (top-left subsystem) follows 
1 1
( ) (0 )t

x t e x
− −

=  

whereas the improper part (top-right subsystem) follows 

2 3
( ) (0 ) ( )x t x tδ

−

= −  and 
3
( ) 0.x t =  In most cases, 

however, the system matrices are not presented in their 

decoupled forms (say, in a similarly transformed linear 

system), and therefore subsystem dynamics are not 

readily recognized. 

Various approaches to decouple these subsystems 

include Weierstrass decomposition and Drazin inverse 

etc., mostly based on the generalized Schur/QZ 

decompositions of a general matrix pencil or by solving 

successive Sylvester matrix equations [17-19]. However, 

these methods often call for complicated subspace 

computation and are either numerically ill-conditioned or 

approximate in nature, and sometimes can even be 

inappropriate [15]. The works of März [20-24] on matrix 

projector chain, marked by their elegant algebras and 

theory, provide an effective way to constructively 

generate the canonical projectors, whose product then 

forms the spectral projectors for completely decoupling 

the proper and improper subsystems of a DS so that 

straightforward analysis as in the above example can be 

carried out. Nonetheless, despite the potential 

applications of canonical projectors, they appear only 

rarely in some work on model order reduction (MOR) of 

DSs (where projectors have led to projected generalized 

Lyapunov and Riccati equations for direct DS-MOR 

unamenable before) and partial realization [12,15,16,25-

28]. 

On the other hand, there are increasingly widespread 

use of DAEs or DSs in circuit modeling and simulation. 

For example, recent attempts have been made to couple 

linear RLC networks to (nonlinear) transistors for direct 

system-level co-simulation [29-31]. Specifically, due to 

different physical natures between wires and solid-state 

devices, DAEs or DSs are first derived from nonlinear 

subcircuits like MOSFET or RF circuits [31] which are 

then interfaced to the interconnect or transmission line 

systems and co-simulated. Similarly, DSs also find 

important application in transient noise analysis where 

standard techniques like MNA are incorporated with 

stochastic noise models, resulting in stochastic DAEs 

[32,33]. Projector techniques can then be employed to 

decouple and reduce general stochastic DAEs into 

explicit stochastic differential equations (SDEs) solvable 

by a number of advanced numerical techniques, e.g., [34]. 

Furthermore, DSs are recently applied to describe 

second-order systems, such as RLCK circuits, as first-

order DS realizations [2] (here ‘K’ refers to the 

susceptance, or inverse of inductance, whose matrix can 

be sparsified much more easily due to its localized 

nature). Based on this first-order DS, existing first-order 

reduction methods such as balanced truncation can be 

adopted for second-order MOR. In all these cases, 

canonical projector techniques can play a major role to 

streamline implementations of DS-oriented modeling 

procedures like DS-MOR, passivity check and 

enforcement. 

While this paper will not present a truly extensive 

coverage of canonical projector techniques and applica-

tions, it contributes uniquely in the following ways: 

• It collects previously scattered results on canonical 

projectors, and presents a relatively complete, self-

contained and rigorous treatment of this topic with 

coherent notations. We are not aware of such an 

article in the literature to date. 

• It provides new/corrected/more compact proofs to 

some fundamental properties and theorems in [20-

22] where the ground work on canonical projectors 

is laid. Regarding corrected proof, we remark that 

Theorem 2 of [20] (Theorem 1 of this paper) serves 

as the founding theorem upon which the canonical 

projector theory is developed. However, its proof in 

[20] regarding the singularity of intermediate chain 

matrices Ej’s is flawed due to its presumption of 

non-zero intermediate projectors Qj’s, i.e., the proof 

is a self-referential one. We give a new and easier 

proof in Appendix A.1. 

• It describes a systematic and iterative canonical 

projector construction routine which is lacking in 

the literature. 

• It highlights some latest deployments of projector 

techniques in DS analysis, with an aim to popularize 

the projector approach and arouse research interests 

into its potential applications. 

 

Nonetheless, to limit the scope and length of this paper, 

the emphasis of this paper falls on the analytical aspects 

of canonical projectors. Efficient and application-specific 

numerical implementations of projector-based algorithms 

are possible: many new circuit modeling examples 

utilizing canonical projectors can be found in the latest 

works, by the authors and other researchers, listed in 

Section 4. 

The organization of this paper is as follows. Section 2 

reviews the basics of projector theory and outlines some 

key properties necessary for the rest of the paper. Section 

3 details the core routine for systematically constructing 

canonical projectors and subsequently the spectral 

projectors for completely decoupling a DS. Some 

practical application examples are succinctly discussed 

in Section 4. Finally, Section 5 draws the conclusion. 

 

2. PROJECTOR BASICS 

 

2.1. Matrix chain and projectors 

Throughout this paper, a linear time invariant (LTI) 

DS in the state space form is assumed: 

Ex Ax Bu= + ,�  (1a) 

y Cx Du= + ,  (1b) 

where n n

E A
×

, ∈�  and .

T n m
B C

×

, ∈�  Also, m

u y, ∈�  

and n

x∈�  are the input, output and state vectors, 

respectively. Here E is generally singular with rank( )E  

.r n= ≤  We assume a regular matrix pencil ,E Aλ −  

namely, there exists a 
0

λ ∈�  such that 
0

det( )E Aλ −  

0.≠  Then, there always exist nonsingular n n
W T

×

, ∈�  

that transform E and A into the so-called Weierstrass 

form [35]: 
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1 1 1 1
0 0

, ,
00

q

n q

I J
W ET W AT

IN

− − − −

−

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (2) 

where Ik denotes an identity matrix of dimension k. The 

matrix q q
J

×∈�  corresponds to the finite eigenvalues 

of ( )E Aλ −  whereas ( ) ( )n q n q

N
− × −

∈�  is nilpotent and 

corresponds to infinite eigenvalues. The matrix pencil is 

stable if all eigenvalues of J are stable (i.e., having 

negative real parts). The nilpotency index µ of N, viz. 
1

0N
µ−

≠  and 0,N
µ
=  is called the index of the matrix 

pencil .E Aλ −  The left and right spectral projectors, 

respectively Pl and Pr, are defined as 

1 1
0 0

and
0 0 0 0

q q

l r

I I
P W W P T T

− −
⎡ ⎤ ⎡ ⎤

= = .⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (3) 

Obviously, Pl and Pr (
l l

Q I P= −  and )
r r

Q I P= −  

project onto the left and right deflating subspaces 

corresponding to the finite (infinite) eigenvalues. 

For a regular index-µ pencil ,E Aλ −  setting 
0

E E=  

and A0 = A, an initial projector Q0 onto 0
ker E  is 

constructed, namely, 2

0 0
Q Q=  and 

0 0
im ker .Q E=  Here 

im( )�  and ker( )�  denote the image and kernel of a 

matrix, respectively. Subsequently, a matrix chain is 

formed: 

1j j j jE E A Q
+

= +  and 
1

,j j jA A P
+

=  (4) 

for 0,1, ,j = �  where 2

j jQ Q=  is the projector onto 

ker jE  and .j jP I Q= −  That is, if ker ,jz E∈  then 

jQ z z=  or 0.jP z =  For the matrix chain in (13), we 

have the following important theorem: 

Theorem 1 [20]: Assume a regular matrix pencil 

E Aλ −  of index µ, then 
0 1
, ,E E

µ−
�  are singular 

while Eµ is nonsingular. 

Proof: A more compact proof than that in [20] is 

given in Appendix A (see also the remark in Section 1).� 

From (4) and the properties of a projector, we get 

1
,j j j jE Q A Q

+
=  (5a) 

1j j jE P E
+

= ,  (5b) 

1 2
,j jE E P P P

µ µ µ− −

= �  (5c) 

1 1
,j j jA A P P P

µ µ+ −
= �  (5d) 

for 0,1, , 1.j µ= −�  From (14) and (15), we also have 

1 1 1
im( ) im imj j j jA Q E E

− − +

⊆ ⊆  and so on. 

 

2.2. Useful properties 

Some important properties of projectors for matrix 

pencils, especially those necessary for the proofs in this 

paper, are reviewed. The reader is referred to [22] for 

further properties. We first define a projector Wj whose 

kernel is the image of Ej, i.e., 
2

j jW W=  and ker jW =  

im ,jE  and the subspace ker( ) {j j j jS W A z A z= = | ∈  

im }jE  that appears in some properties below. Moreover, 

‘+’ is used to denote union of subspaces and, in 

particular, ‘⊕ ’ denotes direct sum of disjoint subspaces 

(subspaces whose only intersection is the zero vector). 

Useful matrix chain properties: 

i) 
1

{ im } { im }j j j j jS z A z E z A z E
−

= | ∈ = | ∈ =�={z Az|  

im }.jE∈  

ii) 
1j jS S

+
⊆  and 

0 1
ker ker j jE E S

+
+ + ⊆� . 

iii) 
1 1

(ker ker ) (ker ker ) (kerj j j j jE A E E E
+ +

= ⊆∩ ∩ ∩ ker 

2
).jE

+
 

iv) 
1

dim(ker ) dim((ker ) ),j j jE E S
+

= ∩  where dim( )�  

denotes dimension. 

v) For a regular pencil, the projectors 
0 1

Q Q
µ−

, ,�  can 

be constructed such that 0j iQ Q =  for .j i>  Pro-

jectors satisfying this property are called admissible 

projectors. 

vi) For admissible projectors 
0 1
, , ,Q Q

µ−
�  we have 

0 1 0
ker( ) im im .j jP P P Q Q= ⊕ ⊕� �  

Proofs: 

i) From the end of Section 2.1, 
1 1j j j jA z A P z E w
− −

= = ⇒  

1 1 1
im im .j j j j j jA z E w A Q z E Az E

− − −

= + ∈ ⇒ ⇒ ∈�  

Similarly, 
1 0 0 0 0j jAz E w A z A P z E w A Q z= ⇒ = = − ∈  

im jE  and so on. 

ii) The first one is obvious from (i) and 
1

im im .j jE E
+

⊆  

Next, we have 
1

ker ,j jE S
+

⊆  since 
1j j j j jA Q A P Q
+

=  

= 0. Consequently, we have 
0 1 2

ker E S S⊆ ⊆  and 

1 2
ker ,E S⊆  which implies 

0 1 2
ker ker .E E S+ ⊆  

The second part then follows by induction. 

iii) For the first part: 
1

(ker ker )j j jz E E Q z z
+

∈ ⇔ =∩  

and ( ) 0 0j j j jE A Q z E z+ = ⇔ =  and j j jA Q z A z=  

= 0. For the second part: 
1

(ker ker )j j jz E E Q z
+

∈ ⇔∩  

= z and 
1 1j jQ z z Q z z

+ +
= ⇒ =  and 

2 1j jE z A z
+ +

=  

0.j j j j jA P z A P Q z= = =  

iv) Qj is in general not unique as only its range is 

constrained. Suppose Q'j is another projector onto 

ker ,jE  we have Q'jQj = Qj and also QjQ'j = Q'j, 

from which it follows –Q'jPj = QjP'j. This permits the 

factorization 

1

1

( )

( )( )

( ),

j j j j j

j j j j

j j j j j

j j j

E E A Q Q

E A Q I P

E A Q I Q P

E I Q P

+

+

′= +

′= + −

′ ′= + +

′ ′= +

 (6) 

where 
1

.j j j jE E A Q
+
′ ′= +  In particular, let †

jE  be 

the pseudo inverse of Ej, we may choose the 

orthogonal projector [22] †
j j jQ I E E′ = −  which pro-

jects onto ker jE  along (ker ) .jE
⊥  Further, define 

†
j j jW I E E′ = −  which projects onto (im )jE

⊥  along 

imEj, we arrive at 
†

1 ( )( )j j j j j j j jE E W A Q I E A Q
+

′ ′ ′= + +  

( ).j jI Q P′+  The second and last brackets on the 

right of equality are invertible whose inverses are 

obtained by changing the ‘+’ signs into ‘–’ signs. 

Consequently, we have 
1

ker ( )(j j jE I Q P I
+

′= − −  
† ) ker( ).j j j j j j jE A Q E W A Q′ ′ ′+  

But 

( ) 0

0(so ) and 0

ker and im (ker ) ,

j j j j

j j j j j j j

j j j j j

E W A Q z

E z Q z z W A Q z W A z

z E A z E z E S

′ ′+ =

′ ′ ′ ′⇔ = = = =

⇔ ∈ ∈ ⇔ ∈ ∩
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from which the proof follows. In particular, we have 

dim(ker )E
µ

=
1 1

dim((ker ) )E S
µ µ− −

∩ =0 for a regular 

pencil. 

v) From Theorem 1 and property (iii), ker 0E
µ
=  so 

we must have 
0 1 1

(ker ker ) (kerE E E
µ−

= =∩ � ∩  

ker ) 0.E
µ

=  This renders 
0 1

(im im )Q Q = =∩ �  

2 1
(im im ) 0Q Q

µ µ− −

=∩  or in other words, 
0

(imQ ⊕  

1 1
im im ) im 0.j jQ Q Q

−

⊕ ⊕ =� ∩  This permits a Qj 

such that 
0 1 1

(im im im ) ker .j jQ Q Q Q
−

⊕ ⊕ ⊕ ⊆�  

Specifically, if U and V are two block column 

matrices with linearly independent columns such that 

im im 0,U V =∩  a projector Q with im imQ U=  

and im kerV Q⊆  is 

1( ) , where [ ].
0

I
Q H H H H H U V

∗ − ∗
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

 

(See also Lemma 2.5 and Proposition 2.6 of [22]). 

vi) This is easily checked from the property that 

0
( ) 0j iP P Q =�  for 0 ,i j≤ ≤  and that 

0
( )jP P z�  

0
0 (im im ).jz Q Q= ⇒ ∈ ⊕ ⊕�  (See also Proposi-

tion 3.1 of [22].) 

 

In addition to the above, many new properties arise 

from the use of admissible projectors, for example, 

1
,j j j j jA Q E Q E Q

µ+
= = =�  (7a) 

1 0
( )j jA A E Q Q

µ+
= − + + ,�  (7b) 

1 0 0
( )j j jP P P I Q Q

−

= − + + ,� �  (7c) 

for 0, , 1.j µ= −�  Furthermore, we have the following 

important decompositions 

0 1 0 1 1 1 2 1

2 1 1

( ) ( ) ( )

( ) ,

I P P Q P P Q P P

Q P Q

µ µ µ

µ µ µ

− − −

− − −

= + +

+ + +

� � �

�

 (8a) 

0 1 0 2 1 0 3 2

0 1 0

( ) ( ) ( )

( ) ,

I P P P P Q P P Q

P Q Q

µ µ µ µ µ− − − − −

= + +

+ + +

� � �

�

 

 (8b) 

which play an essential role to completely decouple and 

solve (1) (cf. Section 4.1). It can be verified that for 

admissible projectors, 
1 1j j j jQ P P Q Q

µ+ −
=�  and 

0jQ P  

1
,j j jP Q Q

−

=�  from which it is readily shown that all 

terms on the right of (8a) and (8b) are then projectors by 

themselves. 

 

3. CANONICAL AND SPECTRAL PROJECTORS 

 

Canonical projectors are admissible projectors that 

satisfy 

1

1 1

1

1 1
, 0, , 2,

j j j j

j j

Q Q P P E A

Q P P E A j

µ µ

µ µ
µ

−

+ −

−

+ −

=

= = −

�

� �

 (9a) 

1 1

1 1 1 1
Q Q E A Q E A
µ µ µ µ µ µ

− −

− − − −

= = .  (9b) 

The last equalities in (9a) and (9b) can be readily 

established using (7b). Canonical projectors allow the 

easy construction of spectral projectors Pr and Pl in (3), 

as well as the solution of x in (1) through a decoupling 

approach. These are addressed in the following. 

 

3.1. Construction of canonical projectors 

We use the superscripts in ( )
,

n
jE

( )n
jA  and ( )n

jQ  to 

denote the nth matrix chain (here the chain index n 

should not be confused with the state order n in (1)). 

Then, with a regular index-µ pencil, setting 
(0)
0E E=  

and (0)
0 ,A A=  the initial matrix chain (0) (0)

1 jjE E
+

= +  
(0) (0)
j jA Q  and (0) (0) (0)

1 ,j jjA A P
+

= 0, , 1,j µ= −�  is formed 

whereby admissible projectors are assumed, i.e., 
(0) (0)

0j iQ Q =  for .j i>  Generally, (0)
,jQ 0, ,j = � µ –

2, are not canonical but (0)
1Q

µ−
 can be assumed canonical 

without loss of generality (see Appendix A.2). Using this 

initial set of projectors (0)
jQ ’s, an iterative matrix chain 

formation procedure then allows the generation of all 

canonical projectors. Specifically, based on the ( 1)n − th 

matrix chain parameters, ( 1) ,n
jE
− ( 1)n

jA
−  and (admissible) 

( 1) ,n
jQ
−  the nth chain is formed by setting 

( )
0
n

E E=  and 
( )
0
n

A A=  and 

( ) ( 1) ( 1)( 1) 1
1 1 1( ) ,

n n nn
Q Q E A

µµ µ µ

− −− −

− − −

=  (10a) 

( 1) ( 1)( ) ( 1) ( 1) 1 ( 1)
1 1 ( ) ,
n nn n n n

j j jjQ Q P P E A
µµ

− −− − − −

+ −
= �  (10b) 

for 0, , 2.j µ= −�  It can be seen that if ( 1)n
jQ
− ’s are 

admissible, ( 1)n
jA
− ( 0, , 1)j µ= −�  in (10) can be 

replaced with A due to (7b). Of course, it remains to 

show that the projectors ( ) ,n
jQ 0, , 1,j u= −�  in (10) 

are indeed valid projectors onto ( )
ker .

n
jE  To show this, 

we need to study some projector properties arising from 

the definition in (10). 

 

3.1.1 Relationship between adjacent chains 

In particular, the following hold: 

Further matrix chain properties: 

vii) ( ) ( 1) 0n n
j iQ Q

−
=  for j i> . 

viii) ( ) ( ) 0n n
j iQ Q =  for ,j i>  i.e., ( )n

jQ ’s are also admis-

sible. 

ix) ( ) ( ) ( 1) ( )n n n n
j i j iQ Q Q Q

−

=  for j i< . 

x) ( ) ( 1) ( 1)
,

n n n
j j jQ Q Q

− −

=

( 1) ( ) ( ) ,n n n
j j jQ Q Q
−

=  and ( ) 2( )n
jQ  

( )
.

n
jQ=  This implies ( )n

jQ  is a valid projector 

with the same range as ( 1) .n
jQ
−  

xi) ( 1) ( ) ( ) ( 1)
.

n n n n
j j j jQ P Q P
− −

= −  

xii) ( ) ( 1) ( ) ( ) ( 1) ( 1)
0

n n n n n n
j j i j j iQ P Q Q P Q

− − −

= =  for any 0 ,i≤  

1.j µ≤ −  

xiii) ( ) ( ) ( 1) ( 1)( ) ( )
0 1 0 1 ,

n n n nn n
j jj jP P Q P P Q

− −

− −

=� �  leading to 
( 1)( ) ( ) ( )
1 .

nn n n
j j jjA Q E Q

−

+
=  

xiv) 
( 1) ( 1)( ) ( 1) ( ) ( 1) ( ) ( 1)
1 1 .

n nn n n n n n
j j j j j jjQ P Q P P Q P P

µ

− −− − −

+ −
= = =� �  

Proofs: The proofs for (vii), (viii), (x), (xi) are trivial, 

and also in the case of (xii) for .j i≥  To prove (xii) for 

,j i<  we note that 

( ) ( 1) ( )

( 1) ( 1)( ) ( 1) ( )
1 1( )

n n n
j j i

n nn n n
j j ij j

Q P Q

Q P Q P Q

−

− −−

+ +
= +
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( 1) ( 1) ( 1) ( 1)( 1) ( 1) 1 ( )
1 1 1 1

( 1)( ) ( 1) ( )
1

( )
n n n nn n n

j ij j j

nn n n
j j ij

Q P P E A Q Q

Q P P Q

µµ

− − − −− − −

+ − + +

−−

+

=

+

�

 

( 1) ( 1) ( 1)( 1) ( 1) 1 ( 1) ( )
1 1 1

( ) ( 1) ( 1) ( )
1

( )
n n nn n n n

j ij j

n n n n
j j ij

Q P P E E Q Q

Q P P Q

µ µµ

− − −− − − −

+ − +

− −

+

=

+

�

 

( 1)( ) ( 1) ( )
1
nn n n

j j ijQ P P Q
−−

+
=  

( 1) ( 1) ( 1)( ) ( 1) ( )
1 2 2( )
n n nn n n

j j ij j jQ P P Q P Q
− − −−

+ + +
= +  

( ) ( 1) ( 1) ( )
0.

n n n n
j j i iQ P P Q

− −

= = =� �  

The proof for ( ) ( 1) ( 1)
0

n n n
j j iQ P Q

− −

=  proceeds similarly. 

Property (ix) then follows from (x) and (xii) by noting 

that ( ) ( ) ( ) ( 1) ( 1) ( ) ( 1) ( )( ) .n n n n n n n n
j i j j j i j iQ Q Q Q P Q Q Q

− − −

= + =  For 

(xiii), it is recognized that the left hand side of the first 

equality is ( ) ( ) ( )
0 1( ) ( ) .
n n n

jjI Q I Q Q
−

− −�  The equal sign 

can then be verified by applying (ix) repeatedly. This 

gives 

( ) ( ) ( 1) ( 1)( ) ( ) ( ) ( )
0 1 0 1

( 1)( 1) ( 1) ( ) ( )
1 .

n n n nn n n n
j j j jj j

nn n n n
j j j jj

A Q AP P Q AP P Q

A Q Q E Q

− −

− −

−− −

+

= =

= =

� �

 

Finally, (xiv) can be proven similarly to (xii). 

Now we establish an important relationship between 
( )n
jE  and ( 1)n

jE
−  and subsequently show that ( )n

jQ ’s 

defined in (10) are actually projectors onto kernels of 
( )n
jE ’s. It follows from (6) that 

( ) ( 1) ( ) ( 1)
1 1 0 0( ).
n n n n

E E I Q P
− −

= +  (11) 

Also, (x) and (xii) above imply 
( ) ( ) ( 1)
1 1 1 (
n n n

E Q E I
−

= +  
( ) ( 1) ( ) ( 1) ( 1) ( )
0 0 1 1 1 1) 0,
n n n n n n

Q P Q E Q Q
− − −

= =  so 
( )
1
n

Q  is a 

valid projector onto ( )
1ker .
n

E  Consequently, noting that 
( 1) ( 1) ( 1)
2 1 1
n n n

E P E
− − −

=  [see (5b)] and 
( 1) ( )
1 0 (
n n

P Q I
−

= −  
( 1)
1 )
n

Q
− ( 1) ( ) ( 1) ( ) ( )

0 0 0 0 0 ,

n n n n n

Q Q Q Q Q
− −

= =  we have 

( ) ( ) ( ) ( )
2 1 1 1

( 1) ( ) ( 1) ( ) ( )
1 0 0 1 1

( 1) ( 1) ( ) ( 1) ( 1) ( )
2 1 0 0 2 1

( 1) ( 1) ( ) ( 1) ( 1) ( )
2 1 0 0 1 1

( 1) ( ) ( 1) ( ) ( 1)
2 0 0 1 1

( )

( ) [(xiii)]

( )[(x)]

( )[(xi)],

n n n n

n n n n n

n n n n n n

n n n n n n

n n n n n

E E A Q

E I Q P A Q

E P Q P E Q

E P Q P Q Q

E I Q P Q P

− −

− − − −

− − − −

− − −

= +

= + +

= + +

= + +

= + +

 

 (12) 

which can be used to show 
( ) ( )
2 2 0.
n n

E Q =  By induction, 

( ) ( 1) ( ) ( 1)( ) ( 1)
0 0 1 1( ),
n n n nn n

j j j jE E I Q P Q P
− −−

− −

= + + +�  (13) 

for 1, , ,j µ= �  and that ( ) ( )
0.

n n
j jE Q =  From (viii), if 

( 1)n
jQ
− ’s are admissible projectors, so are ( )n

jQ ’s. Using 

(xii), it is also seen that the bracket in (13) is invertible 

and 

( ) ( 1) ( ) ( 1)( ) 1 ( 1) 1
0 0 1 1( ) ( )( ) .
n n n nn n

E I Q P Q P E
µ µµ µ

− −− − −

− −

= − − −�  

 (14) 

This suggests that ( ) 1( ) ,n

E
µ

−  which is required for 

computing the (n +1) th matrix chain, needs not be 

formed explicitly. 

 

3.1.2 Proof of canonicity 

Till now, it has been shown that given an admissible 

matrix chain, a new (also admissible) one can be formed 

by redefining its projectors as in (10). The columns in 

Table 1 shows the case where µ chains are formed, 

starting with the 0th chain with its last projector being 

canonical (marked by a gray cell). In practice, the last n 

projector(s) of the nth chain are equal to those of the 

previous chain by definition of (10) and need not be 

computed again, as marked by the equal signs in the 

table, and each new chain creates one more canonical 

projector 
( )

1 .

n

n
Q
µ− −

 

To begin with, we show that this is the case for the 1st 

chain. First, (1)
1Q

µ−
= (0) (0)(0) 1

1 1( )Q E A
µµ µ

−

− −

= (0)
1,Q

µ−
 where the 

first equality is by definition and the second is by the 

canonicity of (0)
1Q

µ−
(therefore (1) (0)

1 1,P P
µ µ− −

=  too). To see 
(1)

1Q
µ−

 is further canonical in the context of the 1st chain, 

(1) (1) (1)(1) 1 (1) 1
1 1 1

(1) (1) (0) (1) (0) (0) 1
1 0 0 1 1

(1) (0) (1)(0) 1 (0) 1
1 1 1

( ) ( )

( )( )

( ) ( ) ,

Q E A Q E A

Q I Q P Q P E A

Q E A Q E A Q

µ µµ µ µ

µµ µ µ

µ µµ µ µ

− −

− − −

−

− − −

− −

− − −

=

= − − −

= = =

�  (15) 

where in the second line we have made use of the fact 

that (1) (0) (0) (0)
1 1 1 1 0.Q P Q P

µ µ µ µ− − − −

= =  To show (1)
2Q

µ−
 is also 

canonical, we first get 

(1) (1) (1) (1) (1)(1) 1 (1) 1
2 1 2 2 1( ) ( )Q P E A Q P E A

µ µµ µ µ µ µ

− −

− − − − −

=  

(1) (1) (1) (0) (1) (0) (0) 1
2 1 0 0 2 2( )( )Q P I Q P Q P E A

µµ µ µ µ

−

− − − −

= − − −�  

(1) (0) (1) (0)(0) 1 (0) 1
2 1 2 2( ) ( ) .Q P E A Q P E A

µ µµ µ µ µ

− −

− − − −

= −  (16) 

The first term in the last line of (16) is re-expressed as 

(1) (0) (0) 1
2 1( )Q P E A

µµ µ

−

− −

 

(1) (0) (0) (0) (0) 1
2 2 2 1( ) ( )Q Q P P E A

µµ µ µ µ

−

− − − −

= +  

(0) (0) (1) (0) (0)(0) 1 (0) 1
2 1 2 2 1( ) ( )Q P E A Q P P E A

µ µµ µ µ µ µ

− −

− − − − −

= +  

(0) (0) (1) (0)(0) 1 (0) 1
2 1 2 2( ) ( ) . [by(xiv)]Q P E A Q P E A

µ µµ µ µ µ

− −

− − − −

= +  

 (17) 

Combining (16) and (17) renders 

 

Table 1. Iterative generation of canonical projector 

chain (gray cells denote canonical projectors).

0 th →  iterations →  
�

 ( 1)µ −

th 

(0)

0Q  (1)

0Q  (2)

0Q  
�

 
( 1)

0Q
μ −  

(0)

1Q  (1)

1Q  (2)

1Q  
�

 
( 1)

1Q
μ −

=
 

�  �  �   �  

(0)

3Q
μ −

 (1)

3Q
μ −

 (2)

3Q
μ −

=
 

�
 

( 1)

3Q
μ

μ

−

−

=
 

(0)

2Q
μ −

 (1)

2Q
μ −

=
 (2)

2Q
μ −

=
 

�
 

( 1)

2Q
μ

μ

−

−

=
 

(0)

1Q
μ −

=

(1)

1Q
μ −

=
 (2)

1Q
μ −

=
 

�
 

( 1)

1Q
μ

μ

−

−

=
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(1) (1) (1) (0) (0)(1) 1 (0) 1
2 1 2 2 1

(0) (0) (0) (1)(0) 1
2 1 2 2

( ) ( )

( ) ,

Q P E A Q P E A

Q P E A Q

µ µµ µ µ µ µ

µµ µ µ µ

− −

− − − − −

−

− − − −

=

= =

 (18) 

where the last equality is again by definition of 
(1)

2.Q
µ−

 

This verifies (1)
2Q

µ−
 is also canonical. 

In the general case, when ( ) ( 1)n n
j jQ Q

−

= (so that ( )n
jP  

= ( 1) ),n
jP

− 1, 2, , ,j kµ µ= − − �  are canonical, we have 

( ) ( ) ( ) ( )( ) 1
11 1

( ) ( ) ( ) ( ) 1
11

( )

( )

n n n nn

k k k

n n n n

k k

Q P P E A

Q P P E A

µµ

µµ

−

−− −

−

−−

=

�

�

 

( ) ( ) ( ) ( ) ( 1)( 1) 1 ( 1) 1
11 1 1( ) ( )

n n n n nn n

k k k k
Q P P E A Q P E A

µ µµ

−− − − −

−− − −

= −�  

( ) ( 1) ( 1) ( 1) ( 1) ( 1) 1
11 1 1

( ) ( 1) ( 1) 1
1 1

( ) ( )

( )

n n n n n n

k k k k

n n n

k k

Q Q P P P E A

Q P E A

µµ

µ

− − − − − −

−− − −

− − −

− −

= +

−

�

 

( 1) ( 1) ( 1) ( 1) 1
11

( 1) ( 1) ( 1) ( 1)( 1) 1
11 1

( )
1

( ) [(xiv)]

( )

. [by definition]

n n n n

k k

n n n nn

k k k

n

k

Q P P E A

Q P P E A

Q

µµ

µµ

− − − − −

−−

− − − −− −

−− −

−

=

=

=

�

�  

By induction, in the nth chain generated by the projectors 

in (10), the last n entries are identical to those of the 

previous chain and that 
( )

1
n

n
Q
µ− −

 is made canonical, too. 

This confirms the results in Table 1, whereas Fig. 2 

summarizes the flow for canonical projector construction 

which we consider to be a much clearer exposition than 

that in [21]. In other words, the iterative matrix chain 

formation algorithm via (10) always converges in µ steps 

leading to all canonical projectors 1 1

0 1
( , , ,Q Q

µ µ− −

�  
1
1 )Q

µ

µ

−

−

 in the ( 1)µ − th chain. 

 

 

Fig. 2. The flow for constructing canonical projectors. 

3.2. Construction of spectral projectors 

Suppose now canonical projectors 
0 1 1
, , ,Q Q Q

µ−
�  are 

produced (with superscripts omitted for notational 

simplicity) by the iterative chain formation procedure in 

Section 3.1. The right spectral projector P
r
 in (3) is then 

readily obtained by 

1

0 1 1

0
.

0 0

q

r

I
P P P P T T

µ

−

−

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
�  (19) 

The proof in [21], nonetheless, is based on an indirect 

comparison with spectral projection and Drazin inverse. 

A constructive and more compact proof is given in 

Appendix A.3. 

To obtain the left projector, canonical projectors are 

constructed from the matrix chain starting instead with 
(0)
0

T
E E=  and 

(0)
0 .

T
A A=  It is then easily checked that 

with the canonical projectors 
0
ˆ ,Q

1
ˆ , ,Q �

1
ˆQ
µ−

 com-

puted for that new T T
E Aλ −  pencil, 

0
ˆ(

l
P P=

1
ˆP �

1

1

0
ˆ ) ,

0 0

qT
I

W WPµ

−

−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (20) 

where 
0 0

ˆ
ˆ I QP = −  etc. 

 

4. APPLICATIONS OF PROJECTOR 

TECHNIQUES 

 

We enumerate, among others, some obvious and 

useful applications of canonical projectors. First, we 

present how to use canonical projector technique to 

decouple a DS arising in circuit modeling and simulation, 

which is then illustrated by index-1 and index-2 real-

world examples. Based on this system decomposition, 

the recent application of projector technique to passivity 

test and enforcement of circuit models are described. 

Finally, we show that with projector technique, we can 

also perform passive MOR directly on a DS-form circuit 

model, which could also preserve the possible 

polynomial parts that are normally missed with 

conventional moment-matching MOR algorithms. In line 

with our scope and not to overwhelm the length of this 

paper, we give only concise description while the reader 

is referred to the references for efficient numerical 

implementations. 

 

4.1. Decoupling and solution of (1) 

The projector framework allows a simple interpret-

ation and solution to the system equation (1) [21]. First, 

premultiplying (1a) by 
1

E
µ

−  and noting (5c), (1a) is re-

casted as 

1 1

1 0
( ) .P P x E Ax E Bu

µ µ µ

− −

−

= +��  (21) 

Assuming canonical projectors, by respectively premulti-

plying (21) with the µ +1 projectors in (8a) and by 

recognizing 
1 2 1 1 2 1

( ) ( )j jI P P P P P Q
µ µ µ µ+ − − + − −

= + +� �  

1 2 1
( ) ,j j jP Q Q

+ + +
+ +�  we obtain the decoupling of (1a), 

or equivalently (21), in (22). The decoupled form in (22) 
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then allows the solution of 
0 1

( ) ,P P x
µ−

�  viz. the state 

variable, in (22a). Specifically, 
1

Q x
µ−

 is solved through 

(22c), whose derivative then allows the solution of 

2u
Q x

−

 in (22b) and so on. If we consider a homogeneous 

system with u = 0, it is easily checked from (22b) and 

(22c) that x is confined in the set (23). 

1

0 1 0 1 0 1

1

0 1

( ) ( ) ( )

( ) ,

P P x P P E A P P x

P P E Bu

µ µ µ µ

µ µ

−

− − −

−

−

=

+

�� � �

�

 (22a) 

0

1

3

2

11 1 2 1 2

22 2 2

22

1

( )

( )

Q

Q

Q

Q

QI P PP P P

QI P P P

x

QI P

QI

µ

µ

µ

µ

µµ

µ

−

−

−

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

�

� �

� �

� �� �

 

0 0 1 1

1 1 2 1

1

3 3 2 1

2 2 1

,

Q Q P P

Q Q P P

x E Bu

Q Q P P

Q Q P

µ

µ

µ

µ µ µ µ

µ µ µ

−

−

−

− − − −

− − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= − −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

�

�

� �  (22b) 

1

1 1
0 .Q x Q E Bu

µ µ µ

−

− −

= +  (22c) 

{ } { }1 0 0 1
| 0, , 0 | .x Q x Q x x x P P x

µ µ− −

= = ⇔ =� � (23) 

And subsequently, (22) reduces to 

1 1

0 1
,

r
x P P E Ax P E Ax

µ µ µ

− −

−

= =� �  (24a) 

0 1
.

r
x P P x P x

µ−
= =�  (24b) 

 

4.2. Index-1 and index-2 examples 

DSs in practical problems often contain structured 

matrices. In the following, we demonstrate how 

canonical projector techniques may be utilized for real-

world index-1 and index-2 applications. The examples 

mainly arise from discretization of PDEs from thermal 

simulations [26], but similar structures may also be 

found in circuit equations. For example, in electrical 

circuit modeling, a passive system can at most be of 

index 2 (i.e., µ = 2, see also Section 4.3) [1,35] whose 

MNA equations may assume the index-2 pencil below. 

We start with an index-1 case stemming from the 

discretization of the Euler equation, namely, 

11 1211 12

21 22

and ,
0 0

A AE E
E A

A A

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (25) 

where E11 and 1

22 21 11 12
A A E E

−

Ω = −  are nonsingular. 

Choosing an arbitrary initial projector Q0 (in this case not 

canonical) onto ker E, we get 

1
11 12 12 11 11 12

1

11 1211 12 11 12

21 22

0

0
.

0 0 0

E E A A E E

A AE E E E

A A I

−

−

⎡ ⎤+ −
⎢ ⎥

Ω⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤ −
= + ⎢ ⎥⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (26) 

This verifies µ =1 by Theorem 1. The canonical projector 

is then obtained by computing 
(0) 1

0 10Q Q E A
−

=  (cf. 

Appendix A.2) which equals 

1 1 1 1
(0) 11 12 21 11 12 22
0 1 1

21 22

1
111 12

21 22[ ],

E E A E E A
Q

A A

E E
A A

I

− −

− −

− −

−

−

⎡ ⎤− Ω − Ω
= ⎢ ⎥

Ω Ω⎣ ⎦

⎡ ⎤−
= Ω⎢ ⎥
⎣ ⎦

 

from which the canonical projector is 
(0)
0 .

r
P I Q= −  

The next DS structure, an index-2 example, arises 

from discretizing the convection equation, namely, 

11 1211

21

0
and ,

00 0

A AE
E A

A

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (27) 

where E11 and 1

21 11 12
A E A

−  are nonsingular. Subsequently, 

the initial matrix chain can be built as 

11 1211 12 11

21

0 0 0

00 0 0 0 0

A AE A E

A I

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 

11 11 12

21 21

0 0
,

0 0 0 0

A A A I

A A

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
 

1
11 12 11 11 12

1

21 11 12
0

E A A E A

A E A

−

−

⎡ ⎤−
⎢ ⎥

−⎢ ⎥⎣ ⎦
 

1
1111 12 11 12

21

0 0
.

00 0 0

AE A E A

A I

−⎡ ⎤⎡ ⎤⎡ ⎤ −
= + ⎢ ⎥⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (28) 

Using the procedures in Section 3, it can be shown that 

1 1 1

21 11 12 21 11 11

0
,

( ) 0

r

r

r

P
A E A A E A

− − −

Π⎡ ⎤
= ⎢ ⎥

− Π⎣ ⎦
 

where 1 1 1

11 12 21 11 12 21
( )

r
I E A A E A A

− − −

Π = −  is a projector 

itself. Higher index examples can also be found in [26]. 

These closed-form spectral projectors, once available, 

then facilitate significant acceleration in computation, 

say, for DS-MOR [26]. 

 

4.3. Passivity test 

Passivity of a linear system is an important property to 

guarantee electrical synthesizability and stable global 

simulation when multiple systems are interconnected and 

simulated [1,3] (see also, e.g., the early work of Cauer 

[36] based on available transfer function where 

subsystem decomposition is a much easier task than the 

otherwise DS formulations here). The numerical 

passivity check for a DS, however, has only been 

investigated rigorously in the recent work [35] which 

proposes a linear matrix inequality (LMI)-based test. 

Nonetheless, such LMI test incurs O(n6) complexity and 
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is simply prohibitive for higher order systems. The direct 

Weierstrass-form transformation (e.g., by the GUPTRI 

algorithm [17,19]) has a worst-case O(n4) work and is 

numerically unstable. Though Hamiltonian transform-

ation techniques have been proposed to overcome part of 

the computational bottleneck [1], they still involve 

frequent singular value decompositions, Gram-Schmidt 

orthogonalizations and the highly expensive (O((2n)3)) 

solution of an algebraic Riccati equation plus a 

Lyapunov equation. 

To this end, the canonical projector techniques provide 

a natural way to decouple the proper (impulse-free) and 

improper (impulsive) parts of a DS, which translates into 

a highly efficient O(n3) passivity test, recently reported 

in [4,5]. Recalling (2), the transfer function of (1) can be 

expressed as 

1( ) ( )G s D C sE A B
−

= + −  

1

1

1 1

1

( )

( )

q

n q

q

n q

I J
D C sW T W T B

IN

sI J

D CT W B

sN I

−

−

−

− −

−

−

⎛ ⎞⎡ ⎤ ⎡ ⎤
= + −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟

⎣ ⎦ ⎣ ⎦⎝ ⎠

⎡ ⎤−
⎢ ⎥= +
⎢ ⎥−⎣ ⎦

 

1

1

( )

( )

q p

p

n q

sI J B
D C C

BI sN

−

∞
−

∞−

⎡ ⎤− ⎡ ⎤
⎢ ⎥⎡ ⎤= + ⎢ ⎥⎣ ⎦ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

 

1

( )

2 2 3 3

( )

( )

,

p

p q p

G s

G s

D C B C sI J B

sC NB s C N B s C N B

∞

−

∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

= − + −

− − − −

�������������

�

�������������������

 (29) 

which consists of the proper part Gp(s) (viz. bounded as 

s→∞) and improper part G∞(s) (viz. unbounded as s→∞). 

The definitions 1
[ ]

p
C C CT

−

∞
=  and 1p

B
W B

B

−

∞

⎡ ⎤
=⎢ ⎥

⎣ ⎦
 

are conformal to the partitions in the Weierstrass form. 

Then, G(s) is positive real if and only if Gp(s) is positive 

real and 0,C NB
∞ ∞

− ≥  while 0,
i

C N B
∞ ∞

= 2 3i = , ,�  

[4,5,35]. Subsequently, canonical projectors can be 

utilized for DS passivity test. Without going into details, 

it can be checked that Gp(s) results from the pencil 

r
EP Aλ −  which can be reduced to a standard state 

space system due to its impulse-free nature, while 
1 1( ( ))

r
C NB CA E I P A B

− −

∞ ∞
= −  (the invertibility of A is 

guaranteed when a DS is passive since its finite 

eigenvalues must be stable [1]). The high-level DS 

passivity test flow is captured in Fig. 3. Standard 

deployments on some electrical circuits from MNA 

extraction, with conventional passivity test for Gp(s), 

have shown promising speedups as in Table 2.  

Recently, a new passivity test technique called 

generalized Hamiltonian method (GHM [37]) and its 

variants [38-40] have been developed by the authors to 

directly check the validity of DS-form circuit models. 

Compared with traditional Hamiltonian-based passivity 

assessments, GHM does not require the system or the D 

term in the state-space equations to be nonsingular. 

Furthermore, by a purely algebraic generalized 

eigenvalue computation, GHM can effectively find all 

possible passivity violation regions. However, GHM 

assumes that the DS improper part is passive, which is 

generally not true. To make GHM applicable to general 

DS models, spectral projectors can be constructed via 

canonical projector techniques. After that, the proper and 

improper subsystems can be decomposed and checked 

separately [4,5]. For large-scale systems (such as MNA 

models or the DS models from parasitic field solvers), 

spectral projectors can be efficiently computed through a 

sparse LU-based algorithm, by exploiting matrix sparsity 

and structures [5]. For large-scale proper subsystem, [5] 

also gives an efficient GHM implementation, making the 

projector-based flow feasible for problems with orders in 

the 10
4. 

 

4.4. Passivity enforcement 

After passivity test, the nonpassive DS models need to 

be enforced with passivity to ensure stable global or 

system-level simulation (namely, when various DS 

models are interconnected and simulated). Previous 

enforcement techniques apply mainly to standard state-

space models, such as those rebuilt from proper rational 

transfer functions. Regarding the DS-form circuit models, 

Fig. 3. Canonical projector based passivity test for DSs.

 
Table 2. CPU times in seconds of various passivity tests 

on a 3GHz PC. 

order of circuit projector SHH [1] GUPTRI [19]

100 0.22 1.47 0.43 

200 1.64 20.17 26.45 

300 5.61 77.25 73.55 

400 13.09 207.7 417.75 

 



Canonical Projector Techniques for Analyzing Descriptor Systems 

 

79

little work has been reported. The recent work [41,42] of 

the authors shows that based on the projector-based 

system decomposition, nonpassive DS models can be 

perturbed to passive ones. The DS passivity enforcement 

flow consists of three steps: 

i) Use spectral projector to extract the possible 

improper subsystem; 

ii) Check if the improper part is passive. If nonpassive, a 

small-size optimization problem is solved for 

improper-part passivation; 

iii) Use GHM [37-40] to find all possible nonpassive 

regions of the proper part, followed by recursive 

perturbations of generalized eigenvalues to enforce 

passivity subject to an accuracy requirement. 

 

In all cases, spectral projector plays a key role in extract-

ing the improper subsystems. 

 

4.5. DS-MOR 

Besides the application in passivity test and enforce-

ment, we also find spectral projectors crucial in the MOR 

of passive circuit models [6,27,28]. Because MNA 

formulation of RLC networks and numerical discreti-

zation of Maxwell equations normally yield DS models, 

conventional positive-real balanced truncation is not 

feasible. Although the Krylov-subspace projection 

methods can be used to reduce DS models, they have two 

drawbacks: 

• Krylov-subspace projections can only preserve sys-

tem passivity for such semi-positive definite (SPD) 

models as linear RLC circuits formed by MNA. For 

non-SPD models, such as those from electromagnet-

ic parasitic extraction with nonsymmetric formula-

tions or approximate fast matrix-vector products, 

system passivity cannot be guaranteed. 

• If D = 0 in the DS state-space equation, a strictly 

proper reduced model would be generated by 

Krylov subspace projections. However, there 

normally exists a polynomial part in the transfer 

function when E is singular. The polynomial part 

can be anon-zero constant term. In some cases, the 

polynomial part may contain an improper term (e.g., 

the admittance matrix of high-speed interconnects 

with strong cross-talk effects), which cannot be 

preserved by Krylov-subspace projection. 

 

To address these issues, [28] uses spectral projectors 

to construct two projected generalized algebraic Riccati 

equations (GAREs). By solution of the positive-real 

gramians, the large circuit models can be balanced and 

reduced without loss of passivity. The improper 

subsystem is also reduced, by solving two discrete-time 

projected Lyapunov equations, again constructed with 

spectral projectors resulting from canonical projectors. In 

[43], it is further discovered that a non-PSD structured 

DS can also be reduced by a more efficient passivity-

preserving moment-matching scheme. In this scheme, 

spectral projectors are required to preserve the possible 

polynomial part; the non-PSD structured proper subsys-

tem is then reduced by a moment-matching method. 

5. CONCLUSION 

 

This paper has systematically put together canonical 

projector theorems and procedures, formerly scattered 

through the literature, for forming spectral projectors that 

decompose a DS into its proper and improper parts. New 

or more elegant proofs have also been presented for 

some fundamental projector properties. Such techniques 

are readily applicable to the analysis and manipulation of 

DSs commonly encountered in system and circuit 

macromodeling and simulation. Several examples of 

applying projectors to DS analysis are highlighted. An 

apparent product of DS decoupling is that the proper part, 

which is impulse-free and therefore representable as a 

standard state space, is conveniently extracted so that all 

procedures for standard state spaces (e.g., MOR, 

passivity check and enforcement) can be reused for DSs 

with little modification. 

 

APPENDIX A 

A.1. Proof of Theorem 1 

We assume a regular matrix pencil E Aλ −  of index 

µ. Due to the regularity assumption and without loss of 

generality, we assume the matrix chain in (4) begins with 

the Weierstrass form of E0 and A0 in (2), where 1
N

µ−  

0≠  and 0.N
µ
=  This is possible via pre- and post-

multiplication of W –1 and T –1 to (4), under j = 0, as 

follows (dimensional subscripts of identity matrices are 

omitted but should be clear from context): 

11 1 1 1 1 1
01

11 1 1 1
01

0 0 0 0

0 0 0 0

0 0 00 0
,

0 0

0 00
,

0

TQ TW E T W ET W AT

TP TW AT W AT

I I J

M N Q M QN I

J IJ

M P M PI

−− −

− − − −

−− −

− −

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦

������� ���������� �����

� �� �

����� ����������

� � � �

 

where 
0

Q�  is a projector onto ker N  and 
0 0

,P I Q= −
��  

while ( )
0

n q q

M
− ×

∈
� �  is an arbitrary matrix with 

0 0
Q M� �  

0
.M=

�  Carrying on with the above for 1, , 1j µ= −�  

we get 

1 1 1 1
1

1 1

0 0

j jW E T W E T

j j j j

I I

N N

− − − −

+

+ +

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥Φ Φ⎣ ⎦ ⎣ ⎦

������� �����

 

 

1 1 1

0 1

0 0 0
,

j jW A T TQ T

j j j j

J

P P M Q

− − −

−

⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥ ⎢ ⎥−Φ⎣ ⎦ ⎣ ⎦

��������������

�� � ��
 (A.1a) 

1 1 1 1 1
1

1 0 0 1

0 0 0
,

j j jW A T W A T TP T

j j j j j j

J J I

P P P P M P

− − − − −

+

+ −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−Φ −Φ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

��������� ��������������

� � � � � �� �
 

 (A.1b) 

where 
0 0 1 0 2 1

( )j j jM P M P P M
− −

Φ = + + +� � � � � �
� �  and Nj = 

1 0 2 1 0 0 1
( )j j jN P P Q N Q PQ

− − −

+ = + +
� � �� � �

� +�+
0 2

( )jP P
−

� �
�  
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1
.jQ

−

�  Similarly, jQ�  projects onto ker jN  and j jQ M� �  

.jM=
�  

Obviously, Eµ is nonsingular if and only if Nµ is 

nonsingular. To prove so, we see that Nj can be re-

expressed as 

0 1
( ).j jN N I P P

−

= + −
� �
�  (A.2) 

By post-multiplying jQ�  to (A.2) (thus nulling the left 

hand side of the equality) and pre-multiplying with 

different powers of N, Table 3 is constructed from which 

it is easy to deduce 0
i

jN Q =
�  (or equivalently i

jN P�  

)iN=  whenever .i j>  First, we show that jQ�  (and 

therefore ),jQ 0, , 1,j µ= −�  are nonzero or in other 

words, Nj (and therefore Ej) are singular for 0, ,j = �  

1.µ −  Multiplying 1
N

µ−  to the left of (A.2) under 

1j µ= −  yields 1 1 1

1 0 2
N N N N P P

µ µ µ

µ µ

− − −

− −

= −
� �
� =0 

(since 1 1

0 2
N P P N

µ µ

µ

− −

−

=
� �
�  from above). If 

1
N

µ−
 is 

nonsingular, then 1
0N

µ−
=  which contradicts our 

assumption, so 
1

0Q
µ−

≠
� . Then, by property (iv) in 

Section 2.2, the kernels of Nj have monotonically non-

increasing ranks as j increases, so 0jQ ≠
�  for j =  

0, , 1.µ −�  Next, we show the product 
0 1

( )Q Q
µ−

� �
�  is 

also nonzero. Suppose 
0 1

( ) 0,Q Q
µ−

=
� �
�  because 

0 1
,Q N N= −

�  we have 
1 1 1

( )( ) 0.N N Q Q
µ−

− =

� �
�  Since 

1 1
0N Q =

�  by definition, we get 
1 1

( ) 0
u

NQ Q
−

=
� �
�  so 

1 1
( )Q Q

µ−
� �
�  is in the range of 

0
.Q�  This gives rise to 

1 1 0 1 1
( ) ( ) 0.Q Q Q Q Q

µ µ− −

= =
� � � � �
� �  Consequently, 

0 1
(P Q��  

1 2 1 2 1
) ( )( ) 0,Q N N Q Q

µ µ− −

= − =
� � �

� �  from which we 

derive 
2 1 1 1

( ) ( ) 0.Q Q Q Q
µ µ− −

= =
� � � �
� �  Continuing this 

way, we have 
1

0Q
µ−

=
�  which is a contradiction, so 

0 1
( ) 0.Q Q

µ−
≠

� �
�  Now we show the nonsingularity of 

.N
µ

 From the subdiagonal entries of Table 3, we have 

0 1
( 1) ( ), 1, , 1.i i

i i
N Q Q Q Q i µ= − = −

� � � �
� �  (A.3) 

Setting j = µ in (A.2) and pre-multiply by 1
N

µ−  gives 

1 1 1 1

1 1

1

0 1 1
( 1) ( ) 0.

N N N N P N Q

Q Q Q

µ µ µ µ

µ µ µ

µ

µ

− − − −

− −

−

−

= − =

= − ≠

��

� � �
�

 (A.4) 

If N
µ

 is singular, there exists a 0z ≠  such that N z
µ

 

0=  which implies 
0 1 1

( ) 0.Q Q Q z
µ−

=
� � �

�  Using similar 

arguments as before, this leads to 
1

0,Q z
µ−

=
�  which in 

turn implies 
0 2 1 1 1

( )P P Q z N N z N z
µ µ µ µ µ− − − −

= − = −
�� �

�  

= 0 so that 
1

0.z Q z
µ−

= =
�  This contradicts the nonzero 

assumption of z and therefore Nµ must be nonsingular. 

 

A.2. Assumption of a canonical 
1

Q
µ−

 

Suppose a matrix chain is constructed where Qj, 

0, , 1,j µ= −�  are admissible. It can be assumed 

without loss of generality that 
1

Q
µ−

 in 
1

E E
µ µ−
= +  

1 1
A Q
µ µ− −

 is canonical. Otherwise, we replace 
1

Q
µ−

 by 
1

1 1 1
Q Q E A
µ µ µ µ

−

− − −

′ =  and update the last matrix chain 

equation to 
1 1 1

.E E A Q
µ µ µ µ− − −

′ ′= +  To see 
1

Q
µ−
′  is a 

valid projector onto 
1

ker ,E
µ−

 we note that 
1 1

Q Q
µ µ− −

′  

=
1

Q
µ−
′  and 1 1

1 1 1 1 1 1 1
Q Q Q E A Q Q E E Q
µ µ µ µ µ µ µ µ µ µ

− −

− − − − − − −

′ = =

1
Q
µ−

= [cf. (7a)], which implies 2

1 1
Q Q
µ µ− −

′ ′=  is a pro-

jector onto the same range as 
1
.Q

µ−
 Moreover, for 

0, , 2,i µ= −�

1

1 1 0 0 2
0

i i
Q Q Q E A P P Q
µ µ µ µ

−

− − −

′ = =�  by 

property (vi) of Section 2.2, thus 
0 2 1
, , ,Q Q Q

µ µ− −

′
�  are 

still admissible. Finally, to prove 
1

Q
µ−
′  is indeed 

canonical, we make use of the property in (6), which 

entails 
1 1

( ),E E I Q P
µ µ µ µ− −

′ ′= +  and obtain 1

1 1
Q E A
µ µ µ

−

− −

′ ′  

= 1

1 1 1 1
( )Q I Q P E A

µ µ µ µ µ

−

− − − −

′ ′− = 1

1 1 1
Q Q E A
µ µ µ µ

−

− − −

′ =
1

Q
µ−

1

1 1
.E A Q

µ µ µ

−

− −

′=  

 

A.3. Constructing right projector Pr 

Given canonical projectors 
0 1 1
, , , ,Q Q Q

µ−
�  we show 

that the right projector is given by 
0 1 1

.

r
P P P P

µ−
= �  

First, we assume general (not necessarily canonical) 

projectors Q0 to 
1

Q
µ−

 and make use of the notations 

and results in Appendix A.1 Referring to (A.1) and by 

virtue of the fact that Eµ is nonsingular, Nµ is nonsingular. 

With some care, it can be shown that 

1

0 1 1

0 1 1

0
,

I
P P P T T

P P P
µ

µ µ

−

−

−

⎡ ⎤
= ⎢ ⎥−Φ⎣ ⎦

�
� � �

�

 (A.5a) 

1 1 1

1 1

0

.

I

E T W
N N

µ

µ µ µ

− − −

−

−

⎡ ⎤
= ⎢ ⎥

− Φ⎢ ⎥⎣ ⎦
 (A.5b) 

(Again the dimensional subscripts of identity matrices 

are omitted for simplicity.) Now because the projectors 

are canonical, we must have 

1

1 1
,Q Q E A

µ µ µ

−

− −

=  (A.6a) 

1

1 1
,j j jQ Q P P E A

µ µ

−

+ −
= �  (A.6b) 

for j equals µ – 2 down to 0. Substituting the notions of 

Qj, Pj and 1
E
µ

−  in (A.1) and (A.5) into (A.6) and 

equating both sides, we get 

1 2 0
0,M M M

µ µ− −

= = = =
� � �

�  (A.7a) 

1

1 1
,Q Q N

µ µ µ

−

− −

=
� �  (A.7b) 

1

1 1
,jj j

P P NQ Q µ µ

−

+ −
=

� �� � �  (A.7c) 

Table 3. Table of 
.

i
jN Q�  

 i =1 i =2 i =3 �

0

i
N Q�  0 0 0 

�

1

i
N Q�  

0 1
Q Q−

� �  0 0 
�

2

i
N Q�  

2
Q− �  

1 2
NQQ−

� �  0 
�

0 1 2
P PQ+

�� �   

3

i
N Q�  

3
Q− �  

3
NQ−

�  
2

2 3
N Q Q−

� �  
�

0 1 2 3
P PPQ+

�� � �  
1 2 3

NPPQ+
�� �   

�  �  �  �   
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for j equals µ – 2 down to 0. Subsequently, Фµ = 0 and 

1

0 1 1

0 1 1

0
.

0

I
P P P T T

P P P
µ

µ

−

−

−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
�

� � �
�

 

Now it remains to show 
0 1 1

0.P P P
µ−

=
� � �

�  From (A.2), 

0 0 0 1 2 11

0 1 1

( )

.

N N Q P P P P QQ

N I P P P

µ µ µ

µ

− −

−

= + + + +

= + −
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�

 (A.8) 

Multiplying 
0 1 1
P P P

µ−
� � �

�  (a projector itself) onto both 

sides of (A.8) yields 

0 1 1 0 1 1
.NP P P N P P P

µ µ µ− −

=
� � � � � �

� �  (A.9) 

On the other hand, (A.7b), (A.7c), (8) and the first 

equation in (A.8) imply 

( )
0 1

1 2 0

1 2 0

( )

( )

( ) .

N N Q Q N

N I P P P N

P P P N N

µ µ µ

µ µ µ

µ µ µ

−

− −

− −

= + + +

= + −

⇒ =

� �
�

� � �
�
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�

 (A.10) 

But from (5c), 
1 2 0

( ) ,N P P P N
µ µ µ− −

=
� � �

�  which together 

with (A.10) and the nonsingularity of N
µ

 gives 

N N NN
µ µ

= .  (A.11) 

Now multiply N to the left of (A.9) results in 

2

0 1 1 0 1 1

0 1 1

2

0 1 1

( ) [by (A.11)]

. [by (A.9)]

N P P P NN P P P

N NP P P

N P P P

µ µ µ

µ µ

µ µ
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−

−

=

=

=
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Keep multiplying N to the left of the (A.9) as above and 

recursively using (A.11) finally gives 

0 1 1 0 1 1
.N P P P N P P P

µ µ

µ µ µ− −

=
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� �  (A.12) 

Since 0N
µ
=  but N

µ

µ
 is nonsingular, we must then 

have 
0 1 1

0 0P P P N
µ

µ µ

−

−

= =
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�  and consequently 

1

0 1 1

0
.

0 0
r

I
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−

−
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