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ABSTRACT

Time-delay systems (TDSs) frequently arise in circuit simulation especially in high-frequency applications.
Model order reduction (MOR) techniques can be used to facilitate the simulation of TDSs. On the other
hand, many kinds of variations, such as temperature and geometric uncertainties, can have significant impact
on the transient responses of TDSs. Therefore, it is important to preserve parametric dependence during the
MOR procedure. This paper presents a new parameterized MOR scheme for TDSs with parameter variations.
We derive parameterized reduced-order models (ROMs) for TDSs using balanced truncation by approximating
the Gramians in the multi-dimensional space of parameters. The resulting ROMs can preserve the parametric
dependence, making it efficient for repeated simulations under different parameter settings. Numerical
examples are presented to verify the accuracy and efficiency of our proposed algorithm. Copyright © 2012 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In high-speed circuit design, time-delay phenomena frequently appear due to the propagation delays,
for instance, caused by the transmission lines in circuit packaging and printed circuit board (PCB)
design [1–5]. In many cases of packaging and PCB design/optimization, propagation delay can
dominate circuit performance, whereby attenuation effects caused by transmission lines are negligible,
and the transmission lines can be regarded as lossless. The problem size and computational cost make
direct simulation impractical for variational analysis of time-delay systems (TDSs). Therefore, model
order reduction (MOR) techniques are applied to reduce the problem size for efficient simulation [6–13].

A TDS can be a variational model when there are various parameters affecting system performance.
The geometric parameters of transmission lines, such as width and thickness, can have a significant
impact on system performance [14], whereas temperature is another factor that can affect
transmission line characteristics [15]. In this case, the computational cost is much higher than the
non-parametric case because the original TDS needs to be simulated repeatedly in order to verify a
number of parameter settings. This is common for worst-case (corner) simulation at the early stage
of circuit design for the purpose of performance optimization. Therefore, parameterized MOR
becomes necessary [16–19]. In parameterized MOR, the MOR procedure is performed only once to
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obtain a variational reduced-order model (ROM), which is subsequently used for repeated simulations
under different parameter settings. Recently, [20, 21] propose new parameterized MOR approaches for
partial element equivalent circuit models which can preserve system passivity.

There are generally two main categories of MOR techniques. The first category is the moment-
matching scheme [6–8]. It projects the original system onto a Krylov subspace by matching the
first several moments of the transfer function. The second category of MOR, named truncated
balanced realization (TBR) [9], stems from control theory and utilizes the controllability and
observability Gramians. The TBR approaches construct the projection matrices by preserving the
dominant states of the balanced systems. Moment-matching based approaches are numerically
more efficient than TBR-based approaches; thus, they have extensive applications. Due to the fact
that there does not exist an analytical error bound for moment-matching, the ROMs are not
optimal, and it is difficult to automatically control the error. On the other hand, the TBR-type
methods provide a better global accuracy and usually obtain nearly optimal ROMs subject to
a given accuracy requirement. This motivates us to develop a TBR-based algorithm for
macromodeling TDSs with variational analysis.

The major cost of TBR lies in computing of the controllability and observability Gramians. For a
linear time invariant (LTI) system, these two Gramians are computed from two Lyapunov equations
at the cost of O(n3), where n is the size of the original system. Recently, a novel TBR-type
algorithm, named the Poor Man’s TBR (PMTBR) [22], was introduced to facilitate the computation
of the Gramians. By Parseval’s theorem, PMTBR approximates the controllability and observability
Gramians in a limited frequency band, other than using their time-domain definitions which are
infeasible to be computed directly. PMTBR can provide a global accuracy within the frequency
band of interest, especially when the original system’s input signals have finite bandwidths. Since
PMTBR is based on matrix-vector multiplication (as in moment-matching schemes), high
computational efficiency can be obtained.

In the literature, the most widely used MOR approaches for TDSs are moment-matching based
[23–26]; however, few results are reported on the Gramian-based MOR of TDSs [27], and there is
also a dominant-pole algorithm for reduction of second-order TDSs [28]. The major difficulty of
applying a TBR-type approach on a TDS is the complicated definitions of the Gramians, which
involve the Lambert W function [29]. Because there is no existing analytical convergence criterion
for the Lambert W function, one cannot determine how many branches are needed to calculate the
TDS Gramians, either from their time-domain definitions or from the corresponding Lyapunov-type
equations. Moreover, the direct computation of TDS Gramians in the time domain involves matrix
inversion, making the computational cost even higher [30]. Therefore, the authors propose to utilize
the PMTBR scheme to facilitate the Gramian calculation for TDSs.

The cost would be extremely high when design or process parameter variations need to be
considered. Most methodologies for variational analysis are based on Monte Carlo simulation [31].
Specifically, one needs to perform full system simulation at every sampling point to obtain the
system behaviors corresponding to different process or design variations. Therefore, it is highly
desirable to use an efficient parameterized macromodeling scheme to avoid the prohibitive
computational cost caused by repeated simulations. Because the parameterized ROM is generated
only once and then can be repeatedly used in subsequent simulations, the computational cost can be
remarkably reduced.

The proposed algorithm takes advantage of the fact that the typical TDSs usually have a finite input
bandwidth and that the time-delay effects are only considered for giga-Hertz (or above) systems
(because the delay values caused by the transmission lines are in the magnitude of nanoseconds).
Therefore, it is justifiable to evaluate the TDS Gramians by the frequency-domain integration in a
limited frequency band. To tackle the problem of variational Gramians in parameterized systems, we
utilize the variational PMTBR scheme proposed in [32]. Numerical accuracy and efficiency of our
proposed algorithm are shown by various numerical examples.

The rest of the paper is organized as follows. Section 2 introduces the formulations of TDSs, as well
as the existing definitions of TDS Gramians. Section 3 first reviews the PMTBR and parameterized
MOR, and then introduces the parameterized MOR using variational Gramians. In Section 4, we
first analyze the Lyapunov-type equations of TDSs, and then the proposed algorithm is elaborated
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with a discussion of practical implementation. Numerical examples are presented in Section 5. Finally,
Section 6 concludes the paper.
2. BACKGROUND OF TDSS

2.1. TDSs

A TDS is formulated as

_x tð Þ ¼ Ax tð Þ þ Adx t � hð Þ þ Bu tð Þ; t > 0
y tð Þ ¼ Cx tð Þ
x 0ð Þ ¼ x0
x tð Þ ¼ g tð Þ; t 2 �h; 0½ Þ

; (1)

where x tð Þ 2 Rn is the state vector,A;Ad 2 Rn�n are the state matrices, h> 0 is a constant time delay in
the states, B 2 Rn�p is the input matrix, CT 2 Rn�q is the output matrix, y tð Þ 2 Rq is the output vector,
and u tð Þ 2 Rp is the input vector. x0 and g(t) are the initial conditions within the delay interval [�h, 0].
For simplicity, we assume that the TDS is a single-delay system; the generalization to multiple delays
is straightforward and will be discussed in Section 4.3.

To analyze the controllability and observability Gramians, one needs to derive the analytical state
solution for a TDS. In [33], the state solution of (1) is formulated as

x t; 0; g; uð Þ ¼ x t; 0; g; 0ð Þ þ
Z t

0
K t; tð ÞBu tð Þdt; (2)

where x(t,0,g,u) denotes a solution at time t corresponding to the initial time 0, initial condition
g(t), and input signal u(t). The homogeneous solution x(t,0,g,0) of (1) is obtained by setting the
input function u(t) to be constant 0. The fundamental matrix function K(t,t) of (1) satisfies the
following equations

@K t; tð Þ=@t ¼ �K t; tð ÞA� K t; tþ hð ÞAd; 0≤t≤t � h
K t; tð Þ ¼ I
K t; tð Þ ¼ 0; for t > t

: (3)

Here, K(t,t) is essential for deriving the controllability and observability Gramians for a TDS.

2.2. Controllability and observability Gramians of TDSs

In the literature, there are many kinds of definitions for the Gramians of a TDS [33–35], such as
M2 controllability, absolute controllability, point-wise controllability, and some hybrid types. In
this paper, we use the point-wise controllability which is the most widely used. We choose this
point-wise definition for TDS controllability/observability because in the literature, we find that
the TDS Gramians can only be derived from this definition, but not the others. Using the other
definitions, by now, one cannot derive such closed-form Gramians for TDSs, which are critical for
the balanced-truncation approach.

Definition 1
(Controllability of a TDS) [36]: The system (1) is point-wise controllable if, for any given initial
conditions g(t) and x0, there exists 0< t1<1, and an admissible (i.e. measurable and bounded on a
finite time interval) input u(t) for t2 [0, t1] such that x(t1, 0, g(t), u(t)) = 0.

It is still difficult to use Definition 1 to numerically check the controllability of a TDS in practice
due to the lack of a well-established analytical criterion. Weiss proposed an algebraic criterion to
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check the point-wise controllability of linear TDSs [33]. In [36], the Lambert W function is used to
define the Gramian matrices analytically. Algebraic Gramians are derived from the time-domain
solution to system (1) using the matrix Lambert W function [36]

x tð Þ ¼
X1
k¼�1

eSktCI
k þ

Z t

0

X1
k¼�1

eSk t�tð ÞCN
k Bu tð Þdt; (4)

with

Sk ¼ 1
h
Wk AdhQkð Þ þ A; (5)

where Wk(Hk) is the matrix Lambert W function of Hk defined in [36]. For more details of
the convergence conditions, definitions, and calculations of CI

k , CN
k , and Qk, we refer the readers

to [36, 37, 30].
As discussed in Section 2.1, the Gramians can be derived directly from the analytical fundamental

matrix function

K t; tð Þ ¼
X1
k¼�1

eSk t�tð ÞCN
k : (6)

Analogous to LTI systems, the controllability Gramian of a TDS is defined as [36]

P 0; t1ð Þ ¼
Z t1

0

X1
k¼�1

eSk t1�tð ÞCN
k BB

T
X1
k¼�1

eSk t1�tð ÞCN
k

( )T

dt: (7)

The analytical criterion of observability is defined similarly as below.

Definition 2
(Observability of a TDS) [36]: The system (1) is point-wise observable in [0,t1] if the initial point x0
can be uniquely determined from the knowledge of u(t), g(t), and y(t).

The observability Gramian [36] is defined as

Q 0; t1ð Þ ¼
Z t1

0

X1
k¼�1

eSk t�0ð ÞCN
k

( )T

CTC
X1
k¼�1

eSk t�0ð ÞCN
k dt: (8)

If there is no delay effect (e.g. setting Ad= 0), a TDS reduces to an LTI system, and the
controllability and observability Gramians are exactly the same as in the LTI case. Therefore, the
TBR procedure for a TDS reduces to the LTI case when Ad = 0.

These analytical Gramians and their time-domain evaluations were first proposed in [36], where
only the first several branches of the Lambert W function are used to approximate the Gramians.
The unavoidable matrix inversion in computing coefficients Sk and CN

k [30] makes such an
evaluation too expensive in practice. Furthermore, it is common in VLSI circuit simulation that the
original TDSs are of very high order; thus, this time-domain evaluation approach is infeasible due to
its extremely high computational cost. Moreover, one cannot determine how many branches should
be used to approximate the Gramians without a convergence criterion for those infinite branches of
the Lambert W function.
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3. BALANCE TRUNCATION WITH PARAMETER VARIATIONS

3.1. Review of the PMTBR

The controllability Gramian P and observability Gramian Q of a stable LTI state-space model are
defined as

P ¼
Z 1

0
eAtBBTeA

T tdt Q ¼
Z 1

0
eA

T tCTCeAtdt; (9)

It can be shown that P and Q are unique positive semidefinite solutions to the Lyapunov equations

APþ PAT þ BBT ¼ 0; ATQþ QAþ CTC ¼ 0: (10)

The conventional TBR computes the Gramians directly from the Lyapunov equations (10). TBR has
advantages over moment-matching because it provides an analytical error bound in terms of H1 norm
of the transfer function [38]. However, the TBR methods are generally more expensive than the
moment-matching algorithms.

According to the Parseval’s theorem, Gramians (9) defined in the time domain can be reformulated
as [22]

P ¼ 1
2p

Z 1

�1
joI � Að Þ�1BBT joI � Að Þ�Hdo; (11a)

Q ¼ 1
2p

Z 1

�1
joI � AT

� ��1
CTC joI � AT

� ��H
do; (11b)

where the superscript H denotes Hermitian transpose. Note that the coefficient 1
2p can be ignored in

numerical implementation because it does not affect the resulting projection matrices. With the
weighting function wk which results from a proper sampling scheme, a finite summation is then used
to approximate the integration defined in an infinite frequency band. Defining

zck ¼ jokI � Að Þ�1B; zok ¼ jokI � ATð Þ�1
CT ; (12)

the approximate Gramians can be calculated as

P
� ¼

X
k

wkzckzHck; Q
� ¼

X
k

wkzokzHok: (13)

The detailed discussions on sampling-point selection and error estimation are presented in [22], and
in practice, we can set wk= 1 [39, 40]. In most practical circuits, the inputs usually have finite
bandwidth, and we are interested in the system performance only within a limited frequency band.
Therefore, it is reasonable to calculate the approximate Gramians (13) within the finite frequency
band of interest and subsequently use the resulting finite-bandwidth Gramians to construct the
projection matrices [22,40].

3.2. Parameterized MOR

Consider a general linear system in the frequency domain with parameter variations, and we denote all
the varying/uncertain parameters (frequency, temperature, geometry, etc.) by a set of k parameters
l1,⋯, lk,
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
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J l1;⋯; ; lkð Þx ¼ Bu; (14)

where J denotes the system matrix in the frequency domain with parameter variations. The
conventional parameterized MOR methods [41–44] use polynomial fitting technique to transfer
system (14) into a tractable form

J l1;⋯; ; lkð Þ ¼ J0 þ
Xk
i¼1

liJi þ
Xk
j;l¼1

ljllJjl þ⋯; (15)

and then truncate (15) to an approximate parameterized system (17) by introducing some new
parameter variables

Jr
� ¼ Ji i ¼ 0; . . . ; k

Jjl j ¼ 1; . . . ; k; l ¼ 1; . . . ; k
lt
� ¼ li i ¼ 1; . . . ; k

ljll j ¼ 1; . . . ; k; l ¼ 1; . . . ; k
;

��
(16)

J0
� þ l1

�
J1
� þ . . .þ lp

�
Jp
�h i

x ¼ Bu: (17)

The second step of parameterized MOR is to construct the projection matrix V which contains the
variational information within the parameter space of interest. After that, the reduced system is
obtained by

VT J0
�
V þ l1

�
VT J1

�
V þ . . .þ lp

�
VT Jp

�
V

h i
x
� ¼ VTBu: (18)

When parameters are considered, a TDS can be described as

_x tð Þ ¼ A l1⋯; lkð Þx tð Þ þ Ad l1⋯; lkð Þx t � h l1⋯; lkð Þð Þ þ Bu tð Þ: (19)

We assume that input/output matrices B and C are parameter independent, because using the TDS
models described in [23], these matrices are only related to the mapping topology of input/output
signals. Similarly, before reduction by projection, we need to first approximate the variational TDS
(19) into an explicit parameterized form like (17). According to the fitting procedure (15), another
assumption of the proposed algorithm is that the matrices of the original model must have the same
dimensions as a function of the parameters.

3.3. Computational complexity with parameter growth

From the parameterized formulation (15), it is noted that system accuracy can be improved if the
largest order of derivative grows. However, the size of the parameterized system (17) will grow
quickly and become extremely high if high-order parameterization is performed. The relation
between the size p of the parameterized model and the largest order mp of derivative is given
by [44]

p ¼ O
kmp

m
mp�0:5ð Þ

p

0
@

1
A; (20)

where k is the number of parameters in the original system. If parameter dependencies are
smooth, mp = 1 is enough to obtain a good accuracy. In such a case, the size p of the
parameterized system grows linearly with the number of parameters; therefore, this algorithm
can apply on a larger number of parameters. In this paper, we focus on handling systems
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
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with smooth parameter dependencies; therefore, only low-order derivative is needed in the
parameterization step. If the parameter dependencies are less smooth where a large mp is required,
the size p of the parameterized system (17) will grow quickly even for a very small number k of
parameters.

In fact, the exponential growth of the ROM size with respect to the parameter number and expansion
order is an open question in parameterized MOR community. Although a recent optimization-based
work [45] whose resulting ROM size is independent of the number of parameter has been proposed,
no solution has been proposed for the time-delay cases. For the non-smooth parameter dependence,
the optimization-based idea [45] can be used for systems without delay effects, and its ROM size is
also independent of the number of parameters. We may extend this idea to TDSs based on balanced
truncation (BT). However, this topic is beyond the scope of the paper, and it will be addressed in
our future work.

3.4. Parameterized MOR via variational Gramians

Assume the LTI system (21) with a single parameter l in its system matrix. The extension to multiple
parameters is shown in Section 4.2.

_x tð Þ ¼ A lð Þx tð Þ þ Bu tð Þ; y ¼ Cx tð Þ: (21)

The variational Gramians in the frequency-parameter space are defined as [32]

Pl ¼ 1
2p

Z
Sl

Z 1

�1
joI � A lð Þð Þ�1BBT joI � A lð Þð Þ�Hdodl; (22a)

Ql ¼ 1
2p

Z
Sl

Z 1

�1
joI � A lð ÞT� ��1

CTC joI � A lð ÞT� ��H
dodl; (22b)

where Pl and Ql are the variational Gramians, and Sl is the space of parameter variations. Note that the
coefficient 1

2p can be ignored in numerical implementation because it does not affect the resulting
projection matrices. From a quadrature-motivated viewpoint, one can use multi-dimensional finite
summations to approximate the multi-dimensional integral Gramians. By defining

zckl ¼ jokI � A llð Þð Þ�1B; zokl ¼ jokI � A llð ÞT� ��1
CT ; (23)

the approximate variational Gramians are formulated as

Pl
� ¼

X
k

X
l

zcklzHckl; Ql
� ¼

X
k

X
l

zoklzHokl: (24)

After computing these Gramians, the conventional TBR procedure can then be applied to reduce the
parameterized system.
4. PROPOSED ALGORITHM

4.1. Lyapunov-type equations of TDSs

Here, we briefly analyze the complexity of Lyapunov-type equations for a TDS.
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
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By defining

wP
ij ¼ eSitCN

i BB
T eSjtCN

j

� �T
; wQ

ij ¼ eSitCN
i

� �T
CTCeSjtCN

j ; (25)

Pij ¼
Z 1

0
wP
ijdt; Qij ¼

Z 1

0
wQ
ij dt; (26)

the controllability and observability Gramians (7) and (8) can be rewritten as

P ¼
Xþ1

i¼�1

Xþ1

j¼�1

Z 1

0
wP
ijdt ¼

Xþ1

i¼�1

Xþ1

j¼�1
Pij; (27a)

Q ¼
Xþ1

i¼�1

Xþ1

j¼�1

Z 1

0
wQ
ij dt ¼

Xþ1

i¼�1

Xþ1

j¼�1
Qij: (27b)

For a stable TDS, we can obtain a set of Lyapunov-type equations for the Gramian components Pij

and Qij

SiPij þ PijS
T
j þ CN

i BB
T CN

j

� �T
¼ 0; (28a)

STi Qij þ QijSj þ CN
i

� �T
CTC CN

j

� �
¼ 0: (28b)

Then, the Gramians (27) can be approximated by using their first several branches of solutions to (28).
However, evaluating the Gramians this way is as difficult as evaluating them by their time-domain

definitions. Because of the O(n3) complexity involved in the Lyapunov-type equations and without a
convergence criterion of the branches, it is impractical to perform TBR on TDSs by computing the
Gramians from these Lyapunov-type equations. Therefore, we utilize the sampling-based PMTBR
scheme to evaluate the TDS Gramians in the frequency domain.

4.2. Parameterized TBR of TDSs

For a variational TDS with k parameters modeled in (19), we use the notation θ to represent the
combination of various k parameters

θ ¼ l1⋯; lkð Þ; (29)

and we use θr to denote the rth point in the parameter space. The variational TDS (19) now can be
rewritten as

_x tð Þ ¼ A θð Þx tð Þ þ Ad θð Þx t � h θð Þð Þ þ Bu tð Þ: (30)

By using second-order affine model

A θð Þ ¼ A0 þ
Xk
i¼1

liAi þ
Xk
j;l¼1

ljllAjl; (31a)

Ad θð Þ ¼ Ad0 þ
Xk
i¼1

liAdi þ
Xk
j;l¼1

ljllAdjl; (31b)

the variational TDS (30) now has explicit dependencies on various parameters, and it is ready for
the parameterized MOR procedure. Note that we can also choose high-order affine models in the
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
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parameterization step if the parameter dependencies are not so smooth and high accuracy is required.
The delay is not parameterized because using the TDS models described in [23] the delay has explicit
dependencies on parameters, and it can be evaluated directly. The matrices A(θ) and Ad(θ) are fit in the
sense of matrix-wise, and if the dimension of the parameter space is high, the complexity of this fitting
procedure will be also very high. By now, the proposed algorithm is only efficient for cases with a few
delays, and it can not deal with cases with hundreds or thousands of delays.

By Laplace transform, the fundamental matrix function of a non-parameterized TDS becomes [36]

Lf
X1

k¼�1
eSktCN

k Bg ¼ sI � A� Ade
�sh

� ��1
B; (32a)

Lff
X1
k¼�1

eSktCN
k gTCTg ¼ sI � AT � AT

d e
�sh

� ��1
CT ; (32b)

where L denotes the Laplace transform operation.
Combining (32) with (22), the variational Gramians of a TDS are calculated in the frequency-

parameter space as

Pθ ¼ 1
2p

Z
Sθ

Z 1

�1
joI � A θð Þ � Ad θð Þe�joh θð Þ

� ��1
BBT joI � A θð Þ � Ad θð Þe�joh θð Þ

� ��H
dodθ; (33)

Qθ ¼ 1
2p

Z
Sθ

Z 1

�1
joI � A θð Þ � Ad θð Þe�joh θð Þ

� ��H
CTC joI � A θð Þ � Ad θð Þe�joh θð Þ

� ��1
dodθ; (34)

where Sθ is the space of parameter variations. Note that the coefficient 1
2p can be ignored in numerical

implementation because it does not affect the resulting projection matrices. By defining

zckl ¼ jokI � A θlð Þ � Ad θlð Þe�jokh θlð Þ
� ��1

B; (35a)

zokl ¼ jokI � A θlð Þ � Ad θlð Þe�jokh θlð Þ
� ��H

CT ; (35b)

the approximate Gramians can be calculated as

Pθ
� ¼

X
k

X
l

zcklzHckl; Qθ
� ¼

X
k

X
l

zoklzHokl: (36)

By experiments, we have found that usually a moderate or small set of sampling points is adequate.
To provide a global accuracy within the frequency-parameter varying range, the sampling points were
chosen to be distributed uniformly in logarithmic scale within the frequency band and distributed
uniformly in linear scale within the parameter space. Combine all the N sampling points in the
frequency-parameter space, and denoting

Zc ¼ zc1; zc2; . . . ; zcN½ �; Zo ¼ zo1; zo2; . . . ; zoN½ �; (37)

the approximate Gramians are further expressed as
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
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Pθ
� ¼ ZcZH

c ; Qθ
� ¼ ZoZH

o : (38)

After calculating the variational Gramians of a TDS, the standard TBR procedure is then applied to
construct the parameterized ROM. The proposed algorithm is summarized in Algorithm 1. Note that
parameterized MOR by projection preserves the TDS structure, and the delay effects remain the
same as in the original system. Similar to classical TBR-based MOR techniques, the proposed
variational Gramian-based method for TDSs may not preserve system passivity. One assumption to
use our proposed algorithm is that the original model should be stable. Stability and passivity
preservation are necessary for stable simulation of interconnected systems; however, such an
enhancement is still an open question in the EDA community. This topic is beyond the scope of this
paper, and it will be addressed in our future work.

4.3. Practical implementation

In practice, TDSs may appear like descriptor systems (DSs), and the TDSs can also have multiple delay
values resulting from different signal propagation paths. Therefore, the state-space model of a
variational TDS becomes

E θð Þ _x tð Þ ¼ A θð Þx tð Þ þ
Xm
i¼1

Adi θð Þx t � hi θð Þð Þ þ Bu tð Þ; (39)

where m is the number of delay terms, and hi is the delay value. In this case, the formulations (35) for
the components of variational Gramians become
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2012)
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zckl ¼ ð jokE θlð Þ � A θlð Þ �
Xm
i¼1

Adi θlð Þe�jokhi θlð ÞÞ�1B; (40a)

zokl ¼ ð jokE θlð Þ � A θlð Þ �
Xm
i¼1

Adi θlð Þe�jokhi θlð ÞÞ�HCT ; (40b)

By replacing steps 4 and 5 in Algorithm 1 with (40), we can perform variational TBR on TDSs (39)
in the form of DSs with multiple delays.
5. EXPERIMENTAL RESULTS

5.1. Proposed TBR on a non-parametric TDS with variable length

In this paper, a TDS is constructed by connecting a linear RLC network with several sets of lossless
MTLs. Figure 1 shows the model structure of a TDS. When the input signals have very high
frequencies, the MTLs can no longer be regarded as lumped elements, and the delay effects become
significant. The coupled parameters of MTLs, including coupled capacitance and inductance, result
in signal propagation delays in the range of nanoseconds. The resulting delay effects in the
frequency domain emerge from around 1GHz. This motivates us to evaluate the Gramians within
the high-frequency band of interest. The detailed procedures of constructing such TDSs are
elaborated in [23], and the per-unit-length (P.U.L.) parameters of MTLs are extracted utilizing the
approaches in [14]. Numerical experiments in this paper are performed on a platform of Intel Core 2
Q8400 with 2.66GHz CPU and 3.25GB RAM.

We can include the temperature and geometric parameter variations in our MTL model such as
width and thickness, which have significant impacts on the transient responses of TDSs. To
efficiently evaluate variational TDSs within the parameter-varying band of interest, parameterized
ROMs are constructed at the nominal point using variational Gramians by sampling in the
frequency-parameter space. The ROMs can then be repeatedly used to predict system performance.

In this section, we first use a non-parametric TDS to verify the frequency-sampling scheme for
Gramian approximation. A TDS of order 688 is constructed by using a two-port linear interconnect
An RLC interconnect network

2 sets of MTLs

+
-

i1

ip

i2

+
-

+
-

v1

vp

v2

Part 1
of the

network

Part 2
of the

network

Part 3
of the

network

Figure 1. A TDS consisting of an RLC interconnect network connected with two sets of lossless MTLs.
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network connected with 24 lossless three-conductor transmission lines, and this TDS has two different
delay values in its state variable. Given a threshold value of 2� 10� 9, the Hankel singular value (HSV)
matrix is truncated at the significant singular-value drop, and an ROM of order 20 is constructed by
utilizing the proposed TBR approach. Because there is no analytical error bond available for this
approximate Gramian-based TBR, the threshold value for truncation is determined heuristically and
based on experiments. The TDS Gramians are approximated by using 20 sampling points distributed
uniformly in a logarithmic scale within the frequency band of interest, i.e. from 106 to 1012 Hz in
our experiments. It is noted that the number of sampling points is chosen by experiments, and in
practice, a small set of sampling points can provide a good accuracy. This sampling strategy is also
applied in other examples. Figure 2 shows the time-domain input current source and its frequency-
domain spectrum, and this input is also applied in the following experiments. Figure 3 compares the
frequency response of the ROM by our proposed TBR with the original TDS. In this paper, transfer
functions in the frequency domain use impedance representation. It is shown that our ROM provides
good accuracy within the frequency band of interest. The time-domain transient response is also
compared in Figure 4, showing that the ROM accurately captures the delay effects.

The proposed TBR uses about 14.2 s to construct the ROM, and the transient simulation times
are 12.6 s for the original model and 0.26 s for the ROM, obtaining about 50� speedup. Note
that the ROM construction time is comparable with the transient simulation time, which means
that the proposed algorithm is relatively efficient, especially when the ROM is normally used for
repeated simulations.
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Figure 2. Input current source and its frequency-domain spectrum. (a) Input source. (b) Frequency-domain
spectrum.
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Figure 4. Transient responses of Example 1 and its relative errors. (a) Transient responses. (b) Time-domain
relative errors.

MODEL ORDER REDUCTION OF PARAMETERIZED TIME-DELAY SYSTEMS
The length of MTLs has evident effects on TDS performance, and changing the length of an MTL
can lead to an evident shift of the resonances in frequency/transient responses. Using the TDS
formulations presented in [23], the length does not affect the P.U.L. parameters of MTLs, and the
system matrices are not functions of length. Therefore, there is no need to perform parameterization
on length, and the delay values can be evaluated directly. In this experiment, we verify the proposed
TBR on three length settings (i.e. 0.5m, 1m, and 1.5m). The nominal model has the length of
1.2m, and we calculate the variational Gramians by using three length-sampling points (i.e. 0.7m,
1.2m, and 1.7m), while the other simulation settings are the same as in the previous example. It is
noted from Figure 5(a) that, the shorter the length is, the higher frequency the ripples emerge from,
because delay value is proportional to the length of MTLs. It is also noted from Figure 6(a) that, the
shorted the length is, the earlier the resonances emerge. From the frequency responses plotted in
Figure 5 and transient responses plotted in Figure 6, it is shown that our algorithm can capture delay
effects accurately.
5.2. TDSs with temperature variation

A TDS can be a temperature-dependent model resulting from MTL parameter variation. The
dependencies of P.U.L. parameters (i.e. the capacitance C and inductance L) of MTLs on
temperature T are modeled using second-order relations [15]
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Figure 5. Frequency responses of Example 1 with different length settings. (a) Frequency responses. (b)
Frequency-domain relative errors.
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Figure 6. Transient responses of Example 1 with different length settings. (a) Transient responses. (b) Time-
domain relative errors.

X. WANG ET AL.
L Tð Þ ¼ L T0ð Þð1þ aL1 T � T0ð Þ þ aL2 T � T0ð Þ2Þ; (41a)

C Tð Þ ¼ C T0ð Þð1þ aC1 T � T0ð Þ þ aC2 T � T0ð Þ2Þ; (41b)

where T0 is the nominal value of temperature, aC1 and aC2 are the first- and second-order coefficients for
C, aL1 and a

L
2 are the first- and second-order coefficients for L, respectively. It is noted that a

C
1 , a

C
2 , a

L
1, and

aL2 are scalars, and the P.U.L. parameters L and C can be matrices whose dimensions are equal to the
number of conductors excluding the reference one. In this experiment, the ROM is constructed at
T0 = 25

oC, and the temperature varies from � 15oC to 80oC.
In this section, a TDS of order 688 is constructed by using a two-port linear interconnect network

connected with 24 lossless three-conductor transmission lines, and this TDS has two different delay
values in its state variable. We calculate the variational Gramians by using ten frequency-sampling
points distributed logarithmically from 106 to 1012 Hz and five temperature-sampling points
distributed linearly from � 15oC to 65oC. Given a threshold value of 7� 10� 9, the HSV matrix is
truncated at the significant singular-value drop, and the parameterized ROM is of order 20 which
can accurately predict the system performance corresponding to various parameter variations. The
frequency responses in Figure 7(a) and transient responses in Figure 8(a) are verified at three
temperature points (i.e. � 10oC, 40oC, and 80oC). The frequency-domain relative errors and time-
domain relative errors are further compared in Figures 7(b) and 8(b), respectively, showing that the
proposed TBR provides good accuracy to capture the temperature dependence.
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Figure 7. Frequency responses of transfer function H(1,1) in Example 2 corresponding to three temperature
points which are � 10oC, 40oC, and 80oC. (a) Frequency responses. (b) Frequency-domain relative errors.
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Figure 8. Time-domain responses of output y(1) in Example 2 corresponding to three temperature points
which are � 10oC, 40oC, and 80oC. (a) Time-domain responses. (b) Time-domain relative errors.

MODEL ORDER REDUCTION OF PARAMETERIZED TIME-DELAY SYSTEMS
The proposed TBR uses about 24.1 s to construct the ROM, and transient simulation times for the
original model and the ROM are about 12.8 and 0.27 s, respectively, obtaining about 50� speedup.
Note that the ROM construction time is comparable with the original simulation time, which means
the proposed algorithm is quite efficient if the ROM needs to be reused repeatedly at various
temperature points.
5.3. TDSs with geometric variation

A TDS can also have geometric variation. The variation of width and thickness of MTLs will change
the values of P.U.L. parameters, making the whole TDS a variational model. The dependencies of the
P.U.L. capacitance and inductance on various geometric parameters are very complicated, and there are
no uniform formulations to calculate them explicitly [14,46]. Therefore, a parameterization step is
needed to first fit the original TDS to a parameterized model with explicit dependencies on various
parameters, and then we can construct the variational ROM. After using least-squares polynomial
interpolation to fit the original geometrically dependent TDS to a second-order affine model (31),
the parameterized TDS now has explicit dependencies on geometric parameters, and we call this
step the parameterization step. In this example, we consider a single-delay TDS, and the P.U.L.
parameters L and C are then scalars. It is shown in Figure 9 that the error of least-squares
polynomial interpolation is quite small, making it viable to use the following second-order
polynomial relations (42) to extract the geometric dependencies.
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Figure 9. Extraction of the geometric dependencies for capacitance and inductance using second-order
polynomial interpolation. Comparisons with original values are made corresponding to width = 5, 7.5, 10,
12.5, 15 mils and thickness = 20, 25, 30, 35, 40, 45, 50 mils, respectively. (1 mil = 0.001 inch) (a) P.U.L.

capacitance. (b) P.U.L. inductance.
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L w; tð Þ ¼ L w0; ; t0ð Þ� 1þ aLw1Δwþ aLw2Δw
2 þ aLt1Δt þ aLt2Δt

2 þ aLwtΔwΔt
� �

; (42a)

C w; tð Þ ¼ C w0; ; t0ð Þ� 1þ aCw1Δwþ aCw2Δw
2 þ aCt1Δt þ aCt2Δt

2 þ aCwtΔwΔt
� �

; (42b)

It is noted that all the coefficients a are scalars. Figures 6(a) and (b) compare the original values with
interpolation values for the P.U.L. capacitance and inductance, respectively.

In this section, we use a nine-port RLC network connected with 40 lossless two-conductor
transmission lines to construct a TDS of order 1740, and this TDS has one constant delay value in
its state variable. Given a threshold value of 5� 10� 12, the HSV matrix is truncated at the
significant singular-value drop, and an ROM of order 50 is constructed with parameter variations in
width and thickness. The parameterized ROM is constructed at the nominal point of width = 10 mills
and thickness = 35 mills (1 mil = 0.001 inch), and the variational Gramians are calculated by using
ten frequency-sampling points distributed logarithmically from 106 to 1012 Hz, three width-sampling
points distributed linearly from 7.5 mils to 12.5 mils and three thickness-sampling points distributed
linearly from 25 mils to 45 mils. Figure 10(a) and Figure 11(a) respectively show the frequency
responses and impulse responses corresponding to various values of width while the thickness is set
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Figure 10. Frequency responses of transfer function H(1,1) in Example 3 corresponding to thickness = 20 mils
with different width settings. (a) Frequency responses. Data 1, data 3, and data 5 are curves of original systems
with width = 5, 10, 15 mils, respectively. Data 2, data 4, and data 6 are curves of reduced systems with

width = 5, 10, 15 mils, respectively. (b) Frequency-domain relative errors.
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Figure 11. Time-domain responses of output y(1) in Example 3 corresponding to thickness = 20 mils with
different width settings. (a) Time-domain responses. Data 1, data 3, and data 5 are curves of original systems
with width = 5, 10, 15 mils, respectively. Data 2, data 4, and data 6 are curves of reduced systems with

width = 5, 10, 15 mils, respectively. (b) Time-domain relative errors.
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to be a corner value of 20 mils. Setting the thickness to be another corner value of 50 mils (note that
this corner value is different from the sampling points 25 mils, 35 mils, and 45 mils), the frequency
responses and impulse responses corresponding to various values of width are plotted again in
Figures 12(a) and 13(a), respectively. It is noted that the variations of frequency responses are not
very large. However, from the results of transient simulation, it is shown that geometric variations
can have significant impact on TDS time-domain responses. The frequency-domain and time-
domain relative errors of the parameterized ROM corresponding to various parameter settings are
also plotted in Figures 10(b), 11(b), 12(b), and 13(b), showing that the proposed TBR provides a
good accuracy to capture the geometric dependencies.

The construction time of the parameterized ROM is about 180 s, and the transient simulation times
for the original model and ROM are about 40 and 0.55 s, respectively, obtaining about 70� speedup.
Note that the ROM construction time is comparable with the simulation time, which means the
proposed algorithm can be quite efficient if the ROM needs to be reused repeatedly at various
parameter settings.

5.4. Efficiency analysis and speed-up performance

We first show the CPU time of the most computationally expensive steps of Algorithm 1 in Table I.
From the results, we can see that the most computationally expensive step is to collect the TDS
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Figure 12. Frequency responses of transfer function H(1,1) in Example 3 corresponding to thickness = 50 mils
with different width settings. (a) Frequency responses. Data 1, data 3, and data 5 are curves of original systems
with width = 5, 10, 15 mils, respectively. Data 2, data 4, and data 6 are curves of reduced systems with

width = 5, 10, 15 mils, respectively. (b) Frequency-domain relative errors.
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Figure 13. Time-domain responses of output y(1) in Example 3 corresponding to thickness = 50 mils with
different width settings. (a) Time-domain responses. Data 1, data 3, and data 5 are curves of original systems
with width = 5, 10, 15 mils, respectively. Data 2, data 4, and data 6 are curves of reduced systems with

width = 5, 10, 15 mils, respectively. (b) Time-domain relative errors.
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Table I. CPU time of the most computationally expensive steps of Algorithm 1 (s).

Computing
the Gramians:
Steps 4,5,6

Cholesky factorization:
Step 7

SVD of cross factors:
Step 8

Computing
projection matrices:

Step 9

Example 1 (Order 688) 6.1 4.1 1.9 2.0
Example 2 (Order 688) 15.6 4.2 1.9 2.2
Example 3 (Order 1740) 60.0 57.1 23.6 39.0

X. WANG ET AL.
variational Gramians. The cost will become high if too many sampling points are used to compute the
variational Gramians. The cost of Cholesky factorization, SVD of cross factors, and computing the
projection matrices will grow quickly if system dimension becomes too high.

For the CPU time of parameterization procedure, we may not be able to provide such data because in
our experiments, this procedure is not fully automatic and requires manual intervention (e.g. we need to
collect raw sampling data of the P.U.L. parameters from simulations or measurements). Even in
Example 2 which involves temperature variations, the parameterization of P.U.L. parameters on
temperature is provided directly by [15]; therefore, we may not be able to provide its CPU time.
However, it does not affect the efficiency analysis for our PMOR algorithm. The reason is that,
whether MOR is performed or not, it is always a necessary step to collect the inputs (in Algorithm
1) to be parameterized if one wants to do variational analysis. Therefore, this issue would not be an
efficiency problem for our algorithm.

Table II summarizes the speed-up performance of these three examples. The MOR times of the
proposed variational TBR are compared with transient simulation times of the original and reduced
models. It is shown that, although the variational MOR takes more (but still comparable) time to
construct the ROMs than their original simulation, a very large speed-up is obtained for simulation
of ROMs. Because at the early stage of VLSI design when designers need to perform many worst-
case simulations in order to obtain optimal system performance, it is very time-consuming to
repeatedly simulate the original system corresponding to various parameter settings. Therefore, if we
perform variational MOR to obtain parameterized ROMs of much smaller size, the repeated
simulations will save a lot of time. Note that the parameterized ROMs are constructed only once and
they can obtain about 50–70� speed-up in our experiments; the proposed variational TBR for TDSs
is therefore an efficient scheme for variational analysis.

It is noted that we do not provide examples with 10000 states or beyond in this paper. The first
reason is the computational cost for MOR process is very high partly because the Cholesky
factorization and SVD take a lot of time when the order n is large. The matrix factorization is
one of the bottlenecks of balance truncation-based MOR. Similar to other BT methods, TDS
BT can provide higher accuracy but cannot deal with extremely large-scale systems as
moment-matching methods do. However, BT methods have recently been made suitable for
large-scale systems [47, 48]. Second, high computational cost means more time in MOR
process. When n is too large, the time for MOR process is much higher than the simulation
time for the original system. See Table II and example 3, the computational time for MOR is
180 s, which is already four times larger than the simulation time of 40 s. Third, order near
2000 is the highest order one can see in other TDS papers in the literature (please see
references [15,23] for TDS model examples).
Table II. Speed-up performance and MOR times of the proposed variational TBR (s).

MOR times
Transient simulation
of original model

Transient simulation
of reduced model Speed-up

Example 1 14.2 12.6 (Order 688) 0.26 (Order 20) 48�
Example 2 24.1 12.8 (Order 688) 0.27 (Order 20) 47�
Example 3 180 40 (Order 1740) 0.55 (Order 50) 73�
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MODEL ORDER REDUCTION OF PARAMETERIZED TIME-DELAY SYSTEMS
6. CONCLUSIONS

This paper has presented a parameterized TBR-type MOR scheme for TDSs with design or process
parameter variations. To the best of our knowledge, in the literature, there is little work to derive
variational ROMs for TDSs via a Gramian-based approach. The experimental results have shown
that the proposed algorithm provides good accuracy and efficiency to capture the variational effects
of TDSs, making it viable for efficient simulation and TDS design optimization.
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