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Via S-Parameter Generalized Hamiltonian Methods

Zheng Zhang,Student Member, IEEEand Ngai Wong,Member, IEEE

Abstract—This paper extends the generalized Hamiltonian
method (GHM) [1], [2] and its half-size variant (HGHM) [2] to
their S-parameter counterparts (called S-GHM and S-HGHM,
respectively), for testing the passivity ofS-parameter descriptor-
form models widely used in high-speed circuit and electro-
magnetic simulations. The proposed methods are capable of
accurately detecting the possible nonpassive regions of descriptor-
form models with either scattering or hybrid (impedance or
admittance) transfer matrices. Their effectiveness and accuracy
are verified with several practical examples. The S-GHM and
S-HGHM methods presented here provide a foundation for the
passivity enforcement ofS-parameter descriptor systems.

Index Terms—Descriptor system (DS), system passivity,
S-parameter generalized Hamiltonian method (S-GHM), S-
parameter half-size GHM (S-HGHM).

I. I NTRODUCTION

A S a superset of nonsingular or regular systems, descriptor
(or singular) systems (DSs) [3], [4] are capable of de-

scribing a much larger variety of physical models. In linearcir-
cuit simulation, modified nodal analysis (MNA) formulations
of RLC networks (such as interconnect and power grid mod-
els [5], [6]) are DSs. In nonlinear circuit analysis, the piece-
wise linearization procedure also generates descriptor-form
models [7]. Even the piece-wise polynomial representationof
an analog/RF circuit can be treated as the interconnection of
several coupled DSs [8]. In electromagnetic (EM) modeling
of devices, connectors and on-chip passives [9]–[11], DS is
also widely used: discretized EM equations are usually of DS
format. Compared with regular systems, DSs can provide more
information, such as the possible impulsive port response.
For some impulse-free physical systems, although the port
responses can be characterized by nonsingular systems, con-
verting the more natural DSs to regular ones can be extremely
expensive and sometimes numerically unstable [12]. In many
cases, it is also desirable to keep the physical models in the
more natural DS format to facilitate fast computation through
possible utilization of matrix structures and sparsity.

Normally, the sizes of the DS models in circuit and EM
simulations are very large, rendering direct simulation pro-
hibitively time-consuming. Therefore, model order reduction
(MOR) techniques [5], [11]–[14] have been widely used to
approximate the original models by much smaller ones. On
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the other hand, from the black-box perspective, given a set
of measured input-output frequency data, a macromodel can
also be built to approximate the original system. Physically,
these measured data may represent the admittance, impedance
or scattering parameters at a set of frequency points. In
high-frequency applications, scattering parameters are more
commonly used due to their relative ease of measurement.
Using such data fitting techniques as vector fitting [15], stan-
dard state-space macromodels can be constructed. Recently,
the Loewner matrix interpolation technique [16], [17] has
been advocated to fit measured/simulated data of electronic
circuits/systems to produce the corresponding DS. Such frame-
work is superior to the traditional vector fitting approach in
the sense that no manual pole initialization is needed and that
the optimal model order can be automatically extracted.

Using either the original models, the reduced models from
MOR, or the macromodels from data fitting, to guarantee
globally stable circuit or system simulations, these models are
usually required to be passive, because a system consistingof
interconnected passive subsystems is guaranteed to be stable.
In contrast, the interconnection of stable but nonpassive sub-
blocks may result in unstable responses depending on the
terminations. If the obtained models are nonpassive, enforce-
ment techniques may be applied to mitigate or compensate
system passivity [18]–[22], where passivity verification needs
to be performed in advance to locate the nonpassive fre-
quency intervals. For standard state-space models, frequency
sweeping tests [18], [19] and the more reliable Hamiltonian
methods [20]–[22] are widely used. To accelerate computation,
half-size singularity tests have been developed for symmetric
cases [23], [24], which bring about an 8× speedup versus
traditional full-size Hamiltonian methods.

For DS models, several algebraic passivity tests have been
proposed for hybrid (admittance or impedance) cases [25]–
[30]. However, their expensive computation [25] and require-
ments of minimal or admissible [26]–[30] realizations render
them impractical for general DS models. Moreover, due to
their inability to locate DS nonpassive regions, they are not
good choices for passivity enforcement flows. To address this
problem, the frequency sweeping technique has been extended
to DS cases [31], [32]. However, due to the sampling nature of
frequency sweeping, no guarantee can be made for the com-
plete identification of all nonpassive regions. To this end,the
recently proposed GHM/HGHM test [1], [2] delivers as high
a numerical accuracy (of locatingall nonpassive frequency
intervals) for DSs as that of Hamiltonian methods [20]–[24]
for regular state spaces.

In the context ofS-parameter DSs, passivity verification
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is still not well addressed. Although the extended bounded-
real lemma [33] and GARE-based method [34] have been
proposed for passivity check, no reliable technique existsfor
the nonpassive region identification. Due to the lack of reliable
S-parameter DS passivity verification algorithms, passivity
enforcement can not be performed for nonpassive models at
present. Motivated by this demand, this paper extends the
GHM and HGHM theories to theirS-parameter counterparts
called the S-GHM and S-HGHM, respectively, to verify the
passivity of the physical models in circuit or EM simulation.
A preliminary version of this work, without the half-size
implementation, has been reported in [35]. Although this work
focuses onS-parameter DS passivity test, a reliable passivity
compensation approach can be straightforwardly developed
based on the theories presented here, which would be doc-
umented in our future reports very soon.

II. BACKGROUND OFPASSIVITY CHECK

Throughout this paper, the superscriptsT and ∗ denote
transpose and conjugate transpose (Hermitian) operations,
respectively. For a general matrixX, σ(X) represents the
set of singular values in descending magnitudes, andσi(X)
denotes theith singular value. The setλ(X,Y ) means the
generalized eigenvalues of the matrix pencil(X,Y ) (i.e.,
det(X − aY ) = 0 if a(∈ C) ∈ λ(X,Y )). The setλ(X, I) is
sometimes abbreviated asλ(X), whereI is an identity matrix.

We consider the continuous linear time-invariant (LTI) DS
modelΣ : (E,A,B,C,D), with the state-space equations

Eẋ = Ax+Bu, y = Cx+Du. (1)

HereE,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, D ∈ R

m×m, and
x ∈ R

n represents the state variables. In this DS,rank(E) ≤
n and the matrix pencil(A,E) is assumed to be regular, i.e.,
det(A − sE) 6= 0 for some s ∈ C. If E is full-rank (or
invertible), the DS reduces to a regular system and then can
be converted to a standard state-space equation by absorbing
E−1 into A andB.

A. Passivity ofS-Parameter LTI Systems

The transfer matrix of system (1) is

S(s) = C(sE −A)−1B +D. (2)

When (1) or (2) represents anS-parameter DS, the (strict)
passivity is equivalent to the (strict) bounded realness ofS(s)
(s = δ + jω, whereδ, ω ∈ R), i.e.,

1) S(s) is analytic on the open right half plane (δ > 0);
2) I − S∗(jω)S(jω) ≥ 0 (> for strict bounded realness)

for all ω.

Condition 2) impliesσ1 (S(jω)) ≤ 1 (or < 1 for strict
bounded realness), which can be checked by sampling some
points (frequencies) along the imaginary axiss = jω [18],
[19], [31]. However, erroneous results may result if nonpassive
regions between sampling points are missed. For standard
state-space models(A,B,C,D) [with E = I in (1)], the more

reliable Hamiltonian method is preferred. The corresponding
2n× 2n Hamiltonian matrix is defined as

M =

[

A−BDT Ŝ−1C −BR̂−1BT

CT Ŝ−1C CTDR̂−1BT −AT

]

(3)

whereŜ = (DDT −I) andR̂ = (DTD−I). Since any purely
imaginary scalarjω ∈ λ(M) pinpoints a crossover pointω
(in rad/sec) of passivity violations, the (possible) nonpassive
regions can be accurately located by the imaginary eigenvalue
calculation ofM. Reference [23] has further developed a
half-size singularity matrix for symmetric standard state-space
models:

P =
(

A−B(D − I)−1C
) (

B(D + I)−1C −A
)

. (4)

It has been proved thatω is a crossover point of passivity
violations if and only if β̂ ∈ λ(P) where β̂(∈ R) = ω2 > 0.
SinceP ∈ R

n×n and the eigenvalue computation hasO(n3)
complexity, the half-size singularity test is about8× faster than
the full-size Hamiltonian method. Both of them are reliable
but only applicable to standard state-space models. Also, (3)
[or (4)] requiresI − DTD (or I − D2 for symmetric cases)
to be nonsingular, which is not guaranteed in all cases.

B. GHM/HGHM Theories for Hybrid DSs

Denoting the transfer matrix of a hybrid (viz. admit-
tance/impedance) DS byH(s), [2] has proposed the GHM
theory: assumeλ′ /∈ λ(D+DT

2 ), thenλ′ ∈ λ(H(jω)+H∗(jω)
2 )

if and only if jω ∈ λ(J, K). (J,K) is defined as

J =

[

A+BQ−1C BQ−1BT

−CTQ−1C −CTQ−1BT −AT

]

K =

[

E
ET

]

(5)

whereQ = (2λ′I − D − DT ). For symmetric DSs,(J,K)
reduces to a half-size one:

(Jh,Kh) =
(

A+B(λ′I −D)−1C, EA−1E
)

(6)

whereby the generalized eigenvaluejω is replaced byβ =
ω2 accordingly. This is the HGHM theory for hybrid DSs.
By settingλ′ = 0, GHM/HGHM can be used to search the
nonpassive regions of hybrid DSs. Due to its half-size nature,
HGHM is approximately 8× faster than GHM [2].

III. S-GHM AND S-HGHM

A. S-Parameter GHM (S-GHM) Theory

Theorem 1:Given the DS (1),jω /∈ λ(A,E) andγ /∈ σ(D),
we haveγ ∈ σ(S(jω)) if and only if jω ∈ λ(M,N), with

M =

[

A−BDTS−1C −γBR−1BT

γCTS−1C −AT + CTDR−1BT

]

N =

[

E
ET

]

(7)

whereS = DDT − γ2I andR = DTD − γ2I.
Proof: Since the system matrices are real, we have

S∗(jω) = ST (−jω) = BT (−jωET − AT )−1CT + DT .
Assuming γ ∈ σ(S(jω)) and γ /∈ σ(D), singular value
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decomposition (SVD) implies that there exist non-zero vectors
v andu such thatS(jω)u = γv andS∗(jω)v = γu, i.e.,

[

C(jωE −A)−1B +D
]

u = γv
[

BT (jωET +AT )−1(−CT ) +DT
]

v = γu

which is equivalent to the compact matrix form
[

C
BT

]

Ω−1
ω

[

B
−CT

] [

u
v

]

=

[

−D γI
γI −DT

] [

u
v

]

.

(8)

Here

[

jωE −A
jωET +AT

]

has been denoted byΩω.

For simplicity, we further denote

z := Ω−1
ω

[

B
−CT

] [

u
v

]

. (9)

Becauseγ is not a singular value ofD, we can prove that
[

−D γI
γI −DT

]

is a nonsingular matrix, thus no non-zero

vectors are contained in its null space. Since neitheru nor
v is zero, the right-hand side of (8) is non-zero, which further
implies z is a non-zero vector because it is a factor of the
left-hand side of (8). Pre-multiplying both sides of (8) by
[

B
−CT

] [

−D γI
γI −DT

]

−1

would lead to

[

B
−CT

] [

−D γI
γI −DT

]

−1 [
C

BT

]

z = Ωωz. (10)

Because

M − jωN =

[

B
−CT

] [

−D γI
γI −DT

]

−1 [
C

BT

]

− Ωω

(10) can be rewritten as

Mz = jωNz. (11)

Therefore,jω is a purely imaginary generalized eigenvalue of
the matrix pencil(M,N). To prove the converse, we define

z′ =

[

−D γI
γI −DT

]

−1 [
C

BT

]

z =

[

u′

v′

]

(12)

which is a factor for the left-hand side of (10). Hereu′, v′ ∈
C

n. BecauseΩω is nonsingular andz 6= 0, the right-hand
side of (10) and thusz′ should be non-zero vectors. Pre-

multiplying (10) by

[

C
BT

]

Ω−1
ω would lead to

[

C
BT

]

Ω−1
ω

[

B
−CT

]

z′ =

[

−D γI
γI −DT

]

z′. (13)

From (13), we can getS(jω)u′ = γv′ andS∗(jω)v′ = γu′.
Because neitheru′ nor v′ is zero (otherwise both of them
and thusz′ should be zero vectors),γ is a singular value of
S(jω).

B. S-Parameter HGHM (S-HGHM) for Symmetric DSs

Theorem 2: Assume the DS in (1) is symmetric [i.e.,
ST (jω) = S(jω)], jω /∈ λ(A,E) and γ /∈ D, we have
γ ∈ σ (S(jω)) if and only if β = ω2 ∈ λ(Mh, Nh), with

(Mh, Nh) =
(

X + Y,E(Y −X)−1E
)

(14)

whereX andY are defined as

X = A−BDS−1C, Y = −γBR−1C. (15)

Proof: If the transfer matrix of (1) is symmetric, we have

S∗(jω) = S(−jω) = C(jωE +A)−1(−B) +D. (16)

Consequently,ET , AT , BT , CT andDT in (7) can be replaced
by E,A,C,B andD, respectively. The following nonsingular
congruence transform on(M,N) gives a new matrix pencil

(M ′, N ′) =

[

I I
I −I

]

(M,N)

[

I I
I −I

]

=

([

2X − 2Y
2X + 2Y

]

,

[

2E
2E

])

.

(17)
Because the above nonsingular congruence transform does not
change the generalized eigenvalues,jω ∈ λ(M ′, N ′) if and
only if jω ∈ λ(M,N). On the other hand, we have proved
the equivalence ofjω ∈ λ(M,N) with γ ∈ σ(S(jω)) in
Section III-A, therefore, ifγ ∈ σ(S(jω)) we also havejω ∈
λ(M ′, N ′), i.e.,

[

−jωE X − Y
X + Y −jωE

] [

w1

w2

]

= 0,

[

w1

w2

]

6= 0. (18)

AssumingX − Y being invertible, we getw2 = jω(X −
Y )−1Ew1 from the upper part of (18). Herew1 is nonzero
(otherwisew2 is also zero). By virtue of this, (18) reduces to

[

Mh − ω2Nh

]

w1 = 0. (19)

Therefore,β = ω2 ∈ λ(Mh, Nh) if γ ∈ S(jω). Analogous
to S-GHM, the converse can also be proved. Settingω2 =
jω(X − Y )−1Eω1 we can reach (18) from (19). And then
usingλ(M,N) = λ(M ′, N ′) we can return to Theorem 1.

Note thatS-parameter HGHM only requires the DS transfer
matrix S(jω) to be symmetric, and it does not pose any
restrictions on the symmetry of the system matrices.

IV. PASSIVITY TEST OFDSS

A. Passivity Test of S-Parameter DSs

In passivity test, we are interested in the special case of
γ = 1, which represents the boundary of passivity violations
of an S-parameter DS. By settingγ = 1, from S-GHM [in
(7)] we get a passivity test matrix pencil(M,N) = (M0, N0)
for scattering DSs with

M0 = M, N0 = N. (20)

HereM is the Hamiltonian matrix defined in (3). Analogously,
for symmetric cases, from S-HGHM [in (14)] one can get a
half-size passivity test matrix pencil(Mh0, Nh0) defined as

Mh0 = A−B(D − I)−1C,

Nh0 = E[(B(D + I)−1C −A]−1E.
(21)
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Fig. 1. Illustrative examples for different kinds of DSs. (a)A globally strictly passive DS. This DS has no crossover points and its transfer matrix is always
unit-bounded. (b) A consistently nonpassive DS. This DS does not have any crossover points, but it is nonpassive at any frequency point. (c) A DS with
locally passive and nonpassive regions. This DS is nonpassive in intervalsl2 = (ω1, ω2), l4 = (ω3, ω4) and l6 = (ω5, ω6).

TABLE I
APPLICABILITY OF DIFFERENT PASSIVITY TESTS

System model S-GHM S-HGHM Hamiltonian Half-size
method singularity

singular system yes yes no no
regular system yes yes yes yes

asymmetric system yes no yes no
symmetric system yes yes yes yes

If the matrix pencil(M0, N0) (or (Mh0, Nh0) for symmetric
DSs) has any purely imaginary (or positive real) generalized
eigenvaluejω (or β = ω2), thenω is a crossover frequency
point where passivity violation happens.

Note that the scattering DS of interest may still be non-
passive even though no crossover points are computed via S-
GHM or S-HGHM. To further identify the possible nonpassive
regions, the following procedures could be used.

1) If no crossover points are found, checkS(jω0) at an ar-
bitrarily selected frequency pointω0. If ||S(jω0)|| < 1,
the DS is globally strictly passive [as illustrated in Fig. 1
(a)]. Otherwise, if||S(jω0)|| > 1 the DS is nonpassive
at any frequency point [as shown in Fig. 1 (b)].

2) If S-GHM/S-HGHM test producesp crossover points
ω1, ω2, ..., ωp which are increasingly ordered, one can
selectp+1 sampling points̃ωk (k = 1, 2, ..., p+1) such
that ω̃k ∈ ℓk whereℓ1 =(0, ω1), ℓi =(ωi−1, ωi) for i =
2, ..., p andℓp+1 =(ωp,∞). If ||S(jω̃k)|| < 1, the DS is
passive in the intervalℓk; otherwise, it is nonpassive in
ℓk. An illustrative example is given in Fig. 1 (c).

If the DS in (1) is a regular system (whenE is invertible), it
can be converted to a standard state-space model withE = I.
Subsequently, for a regular system, the generalized eigenvalue
solution in the test pencil(M0, N0) can be replaced by the
standard eigenvalue computation ofM0 = M. This is in fact
the Hamiltonian passivity verification (in (3) of Section II-A).
And for symmetric regular systems, substitutingE = I into
the half-size test pencil in (21), the generalized eigenvalue
problem reduces to the standard eigenvalue computation of
P [defined in (4)]. Therefore, the Hamiltonian method and
the half-size singularity test in (3) and (4) are the subsets(or
special cases) of S-GHM and S-HGHM, respectively.

B. Passivity Test of Hybrid DSs

A linear LTI system with a hybrid transfer matrix is (strictly)
passive if and only if its transfer matrixH(s) is (strictly)
positive real [25]:

1) H(s) has no poles inRe(s) > 0;
2) H(s) is real for all positive reals;
3) H(s) + H∗(s) ≥ 0 (> for strict positive realness) for

all Re(s) > 0.

Given a square transfer matrixH(s) with det(I +H(s)) 6= 0
for all Re(s) > 0, its Moebius-transformed function is [34]

G(s) = (I −H(s))(I +H(s))−1. (22)

If I + D is invertible, a realization ofG(s) = CS(sES −
AS)

−1BS +DS is

ES = E, AS = A−B(I +D)−1C, BS = −
√
2B(I +D)−1,

CS =
√
2(I +D)−1C, DS = (I −D)(I +D)−1.

(23)
Conversely,H(s) is also a Moebius-transformed function of
G(s). For Moebius transformation, the following properties
hold [34].

1) Let H(s) = C(sE −A)−1B +D be a positive real DS
transfer matrix with nonsingularI+D, then its Moebius-
transformed functionG(s) is bounded real.

2) Given a bounded real DS transfer matrixG(s) =
CS(sES − AS)

−1BS + DS with I + DS being non-
singular and det(I + G(s)) 6= 0 for all Re(s) > 0, its
Moebius-transformed functionH(s) is positive real.

SinceD usually has a much lower dimension thanE and
A, the above transformation is very cheap. If we seeG(s)
as a scattering system, thenH(s) is passive if and only if
G(s) is passive (i.e., bounded real). Therefore, we can test the
passivity ofH(s) by checking the bounded realness ofG(s)
using S-GHM. Further, we note that

G(s) = 2(I +H(s))−1 − I (24)

which implies thatG(s) is symmetric if and only ifH(s)
is symmetric. Therefore, S-HGHM can also be used for
symmetric hybrid cases after Moebius transformation.
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C. Comparison with Traditional Approaches

Table I compares the applicability of different passivity
tests. There are some distinctions among S-GHM/S-HGHM
approach with traditional Hamiltonian method and half-size
singularity test: 1) S-GHM/S-HGHM can be applied to both
singular and regular LTI models, while Hamiltonian method
and half-size singularity test are only applicable to regular
systems; 2) S-HGHM and half-size singularity test are ex-
clusive to symmetric models, but their full-size counterparts
can be used for general cases without symmetric restrictions;
3) S-GHM and S-HGHM search for the passivity violation
points via generalized eigenvalue calculation, while traditional
methods use standard eigenvalue computation; 4) Due to the
half-size nature, S-HGHM and half-size singularity test are
8× faster than S-GHM and Hamiltonian test, respectively; 5)
As will be discussed in Section IV-D, S-GHM/S-HGHM can
test the LTI models withI − DTD being singular, whereas
the traditional approaches fail to work.

D. Numerical Issues

1. The requirement of1 /∈ σ(D) limits the applications of
Hamiltonian method and half-size singularity test. For S-GHM
and S-HGHM this restriction can be removed after a small
modification called equivalent model conversion [1], [2]. The
basic idea is to construct a new DSS′(jω) = C ′(jωE′ −
A′)−1B′ + D′, such thatS′(jω) = S(jω) and 1 /∈ σ(D′).
S′(jω) can be constructed in different ways. In this paper,
S′(jω) is constructed, if necessary, as

E
′
=

[

E
0

]

, A
′
=

[

A
I

]

, B
′
=

[

B
I

]

,

C
′
=

[

C αI −D
]

, D
′
= αI

(25)

with α ∈ R and|α| 6= 1. Subsequently, the passivity ofS(jω)
can be checked by performing S-GHM/S-HGHM onS′(jω).

2. With the equivalent model conversion in (25), the restric-
tion of I+D being nonsingular in Moebius transformation can
also be removed.

3. In S-HGHM passivity test,A−B(D+I)−1C is assumed
to be nonsingular, which is equivalent to1 /∈ λ(S(0)). A proof
is given in the Appendix.

4. The “purely” generalized eigenvalues of(M0, N0) may
appear as conjugate pairsλk = ak±jbk (ak, bk ∈ R). Hereak
is the numerical noise induced by the finite machine precision,
which is also observed in traditional Hamiltonian method [24].
A small numerical tolerancetol > 0 can be used to eliminate
the noise, and only those solutions with|ak| < tol are regarded
as expected results.

The proposed passivity test is summarized in Algorithm 1.

V. EXAMPLES

This section presents some numerical examples to verify
the validity and effectiveness of S-GHM/S-HGHM forS-
parameter and hybrid DSs. All examples are tested in MAT-
LAB R2006a on a 2.66 GHz 2G-RAM PC.

Algorithm 1: Passivity test by S-GHM/S-HGHM.
Input : An LTI model Σ : (E,A,B,C,D), with E,A ∈ Rn×n,

B,CT ∈ Rn×m andD ∈ Rm×m.
Output : The passive regionsUpassive and nonpassive regions

Unonpassive.
begin

1. Initialization: setUpassive = Unonpassive = ∅
2. if Σ : (E,A,B,C,D) is a hybrid systemthen

perform Moebius transform (23) and updateΣ.

3. Compute crossover points.
if 1 /∈ σ(D) andE is nonsingularthen

if Σ is symmetricthen
compute the crossover points by half-size singularity test
(4);
Θ← {ω1, ..., ωp}, where thep crossover pointsω1, ...,
ωp are increasingly ordered.

else
compute the crossover points by traditional Hamiltonian
method (3);
Θ← {ω1, ..., ωp}.

else
if 1 ∈ σ(D) then

perform equivalent model conversion (25), updateΣ.

if Σ is symmetricthen
compute the crossover points by S-GHM (20);
Θ← {ω1, ..., ωp}.

else
compute the crossover points by S-HGHM (21);
Θ← {ω1, ..., ωp}.

4. Locate the passive/nonpassive regions
if Θ = ∅ then

computeS(jω0) (the transfer matrix ofΣ) at ω0

if ||S(jω0)|| < 1 then
Upassive = [0,∞);
system is strictly passive, return.

else
Unonpassive = [0,∞);
system is consistently nonpassive, return.

else
ℓ1 ← [0, ω1), ℓ2 ← (ω1, ω2), ..., ℓp ← (ωp−1, ωp), ℓp+1 ←
(ωp,∞).
for i = 1, ..., p+ 1 do

computeS(jω̇i), with ω̇ ∈ ℓi;
if ||S(jω0)|| < 1 then

Upassive = Upassive ∪ ℓi;
else

Unonpassive = Unonpassive ∪ ℓi.

TABLE II
S-GHM/S-HGHMTEST RESULTS FOR THE ORDER-4 DS.

λ(M0, N0) (jω) λ(Mh0, Nh0) (β)
√
β (rad/sec)

5.5e-7 ±j304491.7 92715196749 304491.7
2.05e-14 ±j22.86 522.6 22.86

A. A Synthetic DS Model

To show the complete test flow, we consider the bounded
realness of the following order-4 single-input single-output
(SISO) DS:

E =







1
1

0 1
0






, A =







−4
−120

1
1






,

B =







1
1
0

10−5






, C =

[

10 200 10−5 0
]

, D = −1.

(26)
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Fig. 2. S-GHM and S-HGHM test results for the order-4 DS model.

The transfer function of this DS is

S(jω) =
10

jω + 4
+

200

jω + 120
− 1 + jω × 10−10. (27)

Solving the equation

|S(jω)| = 1 (28)

we get two crossover frequency points:ω = 22.86 rad/sec
andω = 304491.7 rad/sec. Then we use S-GHM/S-HGHM
to compute the crossover points. Note that in this DSD = −1,
so we need to use equivalent model conversion in advance,
which produces an order-5 DSS′(jω) with D′ = 0. Since the
transfer function is symmetric, S-HGHM can also be applied
for passivity test. The computed results of S-GHM and S-
HGHM are listed in Table II. The results of S-GHM and S-
HGHM coincide with the solutions to (28), which is illustrated
in Fig. 2. Therefore, this scattering DS is bounded real in
the angular frequency band of(22.86, 304491.7), and it is
nonpassive in the bands of(0, 22.86) and (304491.7,∞).

B. A SymmetricS-Parameter Three-Terminal Filter

We use a three-terminal filter with symmetric port response
to illustrate the application of S-GHM/S-HGHM and the
connection to their standard state-space counterparts. The
frequency-dependent scattering parameters are measured at
1601 sampling points ranging from50MHz to 6GHz. Since it
is impulse-free, the input-output response can be described by
either a standard state space or a DS. To use the traditional
Hamiltonian method and half-size singularity test, we first
build an order-120 standard state-space model(A,B,C,D)
by vector fitting [15] with 40 common poles. Both the tradi-
tional Hamiltonian method [20] and the half-size singularity
test [23] show that this model has9 crossover points. The
imaginary eigenvalues ofM and the positive real eigen-
values ofP are illustrated in the first and second columns
of Table III, respectively. The obtained standard state-space
model is then converted to a DS modelHd(jω) described by
(Ed, Ad, Bd, Cd, Dd), via the following transformation

Ed =

[

I120
0

]

, Ad =

[

A
I3

]

Bd =

[

B
I3

]

, Cd =
[

C −D
]

, Dd = 0.

(29)
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Fig. 3. S-GHM and S-HGHM test results for the three-terminal filter.

Then S-GHM and S-HGHM tests onHd(jω) also give 9
crossover points shown in the third and fourth columns of
Table III. Table III shows that the experimental results of all
the four methods pinpoint the same boundary frequency points,
which coincides with the singular value curves of the transfer
matrix in Fig. 3.

C. A Symmetric Admittance PEEC Reduced Model

This example is used to show the validity of S-GHM and
S-HGHM in the passivity test of admittance or impedance
DS models. The original SISO model is an order-480 DS
describing a patch antenna structure with admittance parameter
as its transfer function, which is obtained by partial element
equivalent circuit (PEEC) method [36]. This PEEC model is
nonpassive, which may be induced by poor meshing gener-
ation, inadequate numerical integration, matrix sparsification
or inappropriate geometrical discretization [37]. After model
order reduction via PRIMA [13], an order-53 reduced model
is obtained, which is nonpassive in the low-frequency band.

Since this model is a hybrid system, S-GHM and S-HGHM
can not be directly used. The Moebius-transformed system
is first constructed by (23), and then its transfer function
G(s) is tested by S-GHM and S-HGHM, respectively. The
computed crossover points are listed in Table IV. Fig. 4 shows
the magnitude of the Moebius-transformed transfer function
equals unity at the computed crossover points. To show
the validity, the real part of the original admittance transfer
function H(jω) is also plotted in Fig. 5, which shows that
the proposed S-GHM and S-HGHM methods have accurately
found the passivity violation points of this hybrid DS.

D. A Multi-port DS Model

This example is used to verify the validity of S-GHM and S-
HGHM in general multi-port DS models, and to compare their
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TABLE III
EXPERIMENTAL RESULTS OF VARIOUS PASSIVITY TESTS FOR THE THREE-TERMINAL FILTER MODEL .

Hamiltonian method: Half-size singularity test: positive real S-GHM: imaginary S-HGHM: positive real results of
imaginary results ofλ(M) results ofλ(P)/crossover points (rad/sec) results ofλ(M0, N0) λ(Mh0, Nh0)/crossover points (rad/sec)

6.9e-10 ±j112253 12600780132/112253 2.17e-7 ±j112253 12600780132/112253
2.6e-10 ±j42988.4 18479990052/42988.4 2.58e-8 ±j42988.4 18479990052/42988.4
1.3e-10 ±j38173.7 14572294488/38173.7 1.06e-5 ±j38173.7 14572294488/38173.7
2.2e-11 ±j34551.3 1193794989.3/34551.3 2.93e-8 ±j34551.3 1193794989.3/34551.3
4.0e-12 ±j3109.22 9667288.145/3109.22 2.80e-6 ±j3109.22 9667288.145/3109.22
2.1e-12 ±j1631.07 2660378.573/1631.07 6.02e-7 ±j1631.07 2660378.573/1631.07
3.0e-10 ±j15871.8 251914404.4/15871.8 1.85e-8 ±j15871.8 251914404.4/15871.8
8.7e-11 ±j9879.71 97608669.57/9879.71 5.17e-7 ±j9879.71 97608669.67/9879.71
8.5e-11 ±j9895.29 97916796.34/9895.29 5.20e-7 ±j9895.29 97916796.34/9895.29
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Fig. 4. S-GHM and S-HGHM test results on the Moebius-transformed
transfer function of the order-53 admittance reduced model.

TABLE IV
S-GHM AND S-HGHM TEST RESULTS FOR THE ADMITTANCE REDUCED

MODEL (ON THE MOEBIUS-TRANSFORMED SYSTEM).

λ(M0, N0) (jω) λ(Mh0, Nh0) (β)
√
β (rad/sec)

1.309e-11 ±j0.505080 0.255103 0.505080
1.307e-11 ±j0.505082 0.255110 0.505082
1.127e-13 ±j1.234402 1.523749 1.234402
3.650e-13 ±j2.465012 6.076287 2.465012
3.169e-13 ±j2.560446 6.555922 2.560446
7.587e-13 ±j4.074095 16.59825 4.074095

numerical efficiency. The order-1080 symmetric DS model
has 60 ports, and it is built from the measuredS-parameter
data of an electronic system, via the DS-format Loewner
matrix fitting [16], [17]. Using S-GHM and S-HGHM tests,18
crossover points are obtained, which are plotted in Fig 6. Due
to the large amount of crossover points, they are not listed by
table. Clearly, Fig 6 (b) shows that the computed results are
very accurate. We have listed the CPU times of S-GHM and
S-HGHM tests in Table V. It is clear that S-HGHM is about
8× faster over S-GHM, which is expected due to its half-size
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Fig. 5. The real part of the transfer function of the originalorder-53
admittance DS model. The dots are the results from S-GHM and S-HGHM
tests, which are accurately located at the boundaries of passivity violations.

TABLE V
CPU TIME COMPARISON OFS-GHM AND S-HGHM (IN SECOND)

Model Size Port Number S-GHM S-HGHM Speedup
1080 60 241.2 30.45 7.92

nature and theO(n3) complexity of generalized eigenvalue
calculation.

VI. REMARKS

1) S-GHM and S-HGHM are purely algebraic passivity ver-
ification with similar accuracy to Hamiltonian method
and half-size singularity test. Therefore, they are much
more reliable and accurate than frequency sweeping
methods, which has been verified by their hybrid coun-
terparts [2]. Compared with Hamiltonian method and
half-size singularity test, S-GHM and S-HGHM are not
restricted by the restriction onD matrix, as verified by
the synthetic example.
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Fig. 6. S-GHM/S-HGHM test results for the multi-portS-parameter DS
model. The dots are the results from S-GHM and S-HGHM tests, which are
accurately located at the boundaries of passivity violations.

2) As illustrated in Tables II to IV, the numerical results of
S-GHM and Hamiltonian method contain some numer-
ical noise in the real part, which can be eliminated by
setting a tolerance. S-HGHM and half-size singularity
tests do not suffer from this problem. From the numeri-
cal perspective, they are more accurate over the full-size
S-GHM and Hamiltonian methods.

3) Due to the half-size nature and theO(n3) complexity
of (generalized) eigenvalue computation, S-HGHM and
half-size singularity test are 8× faster than their full-
size counterparts. This has been verified by the results
in [2] and [23] and the CPU timings in Table V. S-GHM
and S-HGHM algorithms presented here are based on
full-matrix eigensolver, so they are feasible to medium-
size (e.g., order-1000) physical models. If we consider
the Hamiltonian structure ofM0 and only compute the
purely imaginary roots in S-GHM test, the proposed
flow is expected to be faster and thus extensible to large
and/or sparse DSs. This work has been discussed in [38].

4) In this paper, the passivity at the interval of two adjacent
crossover points is identified by the sampling scheme
(as shown in Algorithm 1). An alternative approach is
to compute the slope signs of the singular value curves
at the calculated boundary points, according to the gen-
eralized eigenvalue perturbation theory of Hamiltonian
matrix pencils. And furthermore, using the perturbation
theory, our proposed S-GHM/S-HGHM approach also
leads to a DS passivity enforcement scheme. These
issues will be reported soon in the future document.

VII. C ONCLUSION

We have extended GHM and HGHM theories toS-
parameter DSs, which reflect the relationship of the singular
values of a DS transfer matrix with its operating frequency.
With the proposed methods, the passivity ofS-parameter
and hybrid DSs can be efficiently assessed, and the pas-
sive/nonpassive regions can be accurately located. For sym-
metric DSs, S-HGHM enjoys higher numerical accuracy and
an 8× speedup over S-GHM.

APPENDIX

In S-HGHM passivity test, the assumption ofA − B(I +
D)−1C is equivalent to det[I − S(jω)] 6= 0 at the DC point
(i.e., ω = 0). The proof is as follows.

Proof: Firstly, we assume thatA − B(I + D)−1C is
singular, then there exists a vectorp such that

[A−B(I +D)−1C]p = 0 p 6= 0. (30)

SinceA is nonsingular, the above equation is equivalent to

A−1B(I +D)−1Cp = p. (31)

Denote(I+D)−1Cp by q, which should be a nonzero vector
[otherwise,p 6= 0 in (31)]. Pre-multiplying both sides of (31)
by C yields

CA−1Bq = (I +D)q, q 6= 0. (32)

BecauseS(0) = D − CA−1B, (32) can also be written as

[I − S(0)]q = 0, q 6= 0 (33)

which showsI − S(0) is singular [i.e.,1 ∈ λ(S(0))].
Next, we start with (32) to prove the converse. Since the

right side of (32) is nonzero (because1 /∈ σ(D) andq 6= 0), we
denotep′ = A−1Bq which should also be nonzero. Equation
(32) is equivalent to

(I +D)−1CA−1Bq = q. (34)

Pre-multiplying this equation byA−1B we get

A−1B(I +D)−1Cp′ = p′, p′ 6= 0. (35)

Hence,A−B(I +D)−1C is singular.
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