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Passivity Check of5-Parameter Descriptor Systems
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Abstract—This paper extends the generalized Hamiltonian the other hand, from the black-box perspective, given a set
method (GHM) [1], [2] and its half-size variant (HGHM) [2] to  of measured input-output frequency data, a macromodel can
their S-parameter counterparts (called S-GHM and S-HGHM, 454 pe puilt to approximate the original system. Physicall

respectively), for testing the passivity ofS-parameter descriptor- . h
forrﬁ modé)s widely Ssed ?n high¥speeg circuit and elgctro- these measured data may represent the admittance, impgedanc

magnetic simulations. The proposed methods are capable of OF scattering parameters at a set of frequency points. In
accurately detecting the possible nonpassive regions of descrpt  high-frequency applications, scattering parameters aveem
form models with either scattering or hybrid (impedance or commonly used due to their relative ease of measurement.
admittance) transfer matrices. Their effectiveness and accuacy Using such data fitting techniques as vector fitting [15]nsta

are verified with several practical examples. The S-GHM and dard stat del b tructed. R fl
S-HGHM methods presented here provide a foundation for the ard staie-space macromodeis can be constructed. Recently

passivity enforcement ofS-parameter descriptor systems. the Loewner matrix interpolation technique [16], [17] has
. .. been advocated to fit measured/simulated data of electronic
Index Terms—Descriptor system (DS), system passivity,

S-parameter generalized Hamiltonian method (S-GHM), S- circuit.s/systerrjs to produce thg correspondi'ng DS. Suchla‘{a'
parameter half-size GHM (S-HGHM). work is superior to the traditional vector fitting approach i
the sense that no manual pole initialization is needed aaid th
the optimal model order can be automatically extracted.
Using either the original models, the reduced models from
S a superset of nonsingular or regular systems, descript®OR, or the macromodels from data fitting, to guarantee
(or singular) systems (DSs) [3], [4] are capable of dgjlobally stable circuit or system simulations, these medeé
scribing a much larger variety of physical models. In lineiar  ysually required to be passive, because a system consisting
cuit simulation, modified nodal analysis (MNA) formulat®n interconnected passive subsystems is guaranteed to He. stab
of RLC networks (such as interconnect and power grid moth contrast, the interconnection of stable but nonpassite s
els [5], [6]) are DSs. In nonlinear circuit analysis, theggie plocks may result in unstable responses depending on the
wise linearization procedure also generates descriptonf terminations. If the obtained models are nonpassive, eafor
models [7]. Even the piece-wise polynomial representadon ment techniques may be applied to mitigate or compensate
an analog/RF circuit can be treated as the interconnecfionsystem passivity [18]-[22], where passivity verificatiomeds
several coupled DSs [8]. In electromagnetic (EM) modeling be performed in advance to locate the nonpassive fre-
of devices, connectors and on-chip passives [9]-[11], DS dsiency intervals. For standard state-space models, fnegue
also widely used: discretized EM equations are usually of Dsveeping tests [18], [19] and the more reliable Hamiltonian
format. Compared with regular systems, DSs can provide mefrithods [20]-[22] are widely used. To accelerate compuriati
information, such as the possible impulsive port responsglf-size singularity tests have been developed for symmet
For some impulse-free physical systems, although the peHses [23], [24], which bring about an<8speedup versus
responses can be characterized by nonsingular systems, ¢eftitional full-size Hamiltonian methods.
verting the more natural DSs to regular ones can be extremelyror DS models, several algebraic passivity tests have been
expensive and sometimes numerically unstable [12]. In mapyoposed for hybrid (admittance or impedance) cases [25]-
cases, it is also desirable to keep the physical models in {38]. However, their expensive computation [25] and reguir
more natural DS format to facilitate fast computation tiylou ments of minimal or admissible [26]-[30] realizations rend
possible utilization of matrix structures and sparsity. them impractical for general DS models. Moreover, due to
Normally, the sizes of the DS models in circuit and EMheir inability to locate DS nonpassive regions, they are no
simulations are very large, rendering direct simulatioo-prgood choices for passivity enforcement flows. To address thi
hibitively time-consuming. Therefore, model order redurtt problem, the frequency sweeping technique has been extende
(MOR) techniques [5], [11]-{14] have been widely used tg DS cases [31], [32]. However, due to the sampling nature of
approximate the original models by much smaller ones. Qquency sweeping, no guarantee can be made for the com-
. . plete identification of all nonpassive regions. To this ethe,
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mittee of The University of Hong Kong. a numerical accuracy (of locatingll nonpassive frequency
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is still not well addressed. Although the extended bounderkliable Hamiltonian method is preferred. The correspogdi
real lemma [33] and GARE-based method [34] have beén x 2n Hamiltonian matrix is defined as
proposed for passivity check, no reliable technique exists T a1 51T
the nonpassive region identification. Due to the lack obi#é M = A- liD_ls ¢ T _Bﬁ :,{3 T
o ) L cts—ic C'*'DR™'BY — A
S-parameter DS passivity verification algorithms, pasgivit
enforcement can not be performed for nonpassive modelsyatere$ — (DDT 1) andR = (DT D—1T). Since any purely
present. Motivated by this demand, this paper extends fagaginary scalarjw € A(M) pinpoints a crossover point
GHM and HGHM theories to theif-parameter counterparts(in rad/sec) of passivity violations, the (possible) nonpassive
called the S-GHM and S-HGHM, respectively, to verify theegions can be accurately located by the imaginary eigeaval
passivity of the physical models in circuit or EM simulationcalculation of M. Reference [23] has further developed a

A preliminary version of this work, without the half-sizehalf-size singularity matrix for symmetric standard stspace
implementation, has been reported in [35]. Although thiskwo models:

focuses onS-parameter DS passivity test, a reliable passivity . .
compensation approach can be straightforwardly developed P= (A - B(D-1) C) (B(D +1)7C— A) : (4)
based on the theories presented here, which would be dchas been proved that is a crossover point of passivity

®3)

umented in our future reports very soon. violations if and only if3 € A(P) where3(e R) = w? > 0.
SinceP € R™*" and the eigenvalue computation hagn?)
Il. BACKGROUND OF PASSIVITY CHECK complexity, the half-size singularity test is ab8ut faster than

the full-size Hamiltonian method. Both of them are reliable
Throughout this paper, the superscrigtsand * denote but only applicable to standard state-space models. ABjo, (
transpose and conjugate transpose (Hermitian) operatioes (4)] requires! — D7D (or I — D? for symmetric cases)
respectively. For a general matriX, o(X) represents the to be nonsingular, which is not guaranteed in all cases.
set of singular values in descending magnitudes, af&)
denotes theith singular value. The seX(X,Y) means the 5 sHM/HGHM Theories for Hybrid DSs
generalized eigenvalues of the matrix pengl,Y) (i.e., i ) , i ,
det(X — aY) = 0 if a(e C) € \(X,Y)). The set\(X, I) is Den.otlng the transfer matrix of a hybrid (viz. admit-
sometimes abbreviated a§X), where! is an identity matrix. 2NC€/ |mpedanc?) DS g’yé(f)' [2] ha,s propgﬁicg J}*e( S)HM
We consider the continuous linear time-invariant (LTI) D&1€OTY: assume\” ¢ A( 5, then V' € \(ZH25—)
model S : (E, A, B, C, D), with the state-space equations I and only if jw € A(J, K). (J, K) is defined as

) A+ BQC BQ~'BT
Ei = Az + Bu, y= Cx+ Du. Q) J = —CTQ-'C  —CTQ BT — AT
HereE, A e R’ILXTL7 B E RTLXTYL, C E RHI,X’VL7 D 6 RTYLXT)’L, and K _ |: E - :| (5)
x € R™ represents the state variables. In this B&k(FE) < E

n and the matrix penci(A, E) is assumed to be regular, i'e'whereQ = (2X'I — D — DT). For symmetric DSs(.J, K)
det(A — sE) # 0 for somes € C. If E is full-rank (or | oquces to a half-size one: ’

invertible), the DS reduces to a regular system and then can
be converted to a standard state-space equation by abgorbin ~ (Jn, Ki) = (A+ B(\N'I—D)™'C, EAT'E)  (6)

—1
E~" into A and B. whereby the generalized eigenvalye is replaced byg =

w? accordingly. This is the HGHM theory for hybrid DSs.

A. Passivity ofS-Parameter LTI Systems By setting N :_0, GHM/HQHM can be us_ed to se_arch the
_ ) nonpassive regions of hybrid DSs. Due to its half-size mgtur
The transfer matrix of system (1) is HGHM is approximately & faster than GHM [2].
S(s)=C(sE— A)"'B+D. 2

1. S-GHM AND S-HGHM

When (1) or (2) represents asi-parameter DS, the (strict) A. S-Parameter GHM (S-GHM) Theory

passivity is equivalent to the (strict) bounded realnesS (@ Theorem 1:Given the DS (1)jw ¢ A\(A, E) andy ¢ o(D),

(s =6+ jw, whered,w € R), i.e., we havey € o(S(jw)) if and only if jw € A(M, N), with
1) S(s) is analytic on the open right half plané £ 0);

. . . A—BDTs-1C —vBR™'BT
2) I — S*(jw)S(jw) > 0 (> for strict bounded realness) M= [ ~OTS-1C T j_ CTDR-1BT
for all w. .
Condition 2) implieso; (S(jw)) < 1 (or < 1 for strict N = [ ET} (7)

bounded realness), which can be checked by sampling some

points (frequencies) along the imaginary axis= jw [18], whereS = DDT —~2I andR = DT D — ~21.

[19], [31]. However, erroneous results may result if norspas Proof: Since the system matrices are real, we have
regions between sampling points are missed. For stand&djw) = ST (—jw) = BT (—jwE?T — AT)~1CT 4 DT,
state-space mode(sl, B, C, D) [with E = I in (1)], the more Assumingy € o(S(jw)) and v ¢ o(D), singular value
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decomposition (SVD) implies that there exist non-zero@ect B. S-Parameter HGHM (S-HGHM) for Symmetric DSs

v andu such thatS(jw)u = yv and §* (jw)v = u, i.e., Theorem 2 Assume the DS in (1) is symmetric [i.e.,
_ B ST(jw) = S(jw)], jw ¢ MA,E) andv ¢ D, we have
[C(jwE — A)™'B + D] u =yv v €0 (S(jw)) if and only if 8 = w? € A(My, Ny), with
[BT (jwET + AT)"H(=CT) + D] v = yu (M, Ny)) = (X +Y, E(Y — X)"'E) (14)
which is equivalent to the compact matrix form where X andY are defined as
C . [B u -D I u X =A-BDS™'C, Y =—-—yBR'C. (15)
BT Qw T = I —-DT : . . .
v v v Proof: If the transfer matrix of (1) is symmetric, we have

S*(jw) = S(—jw) = C(jwE + A)"'(=B)+ D.  (16)

has been denoted bf,,. Consequentlyt”, AT BT CT andDT in (7) can be replaced
by E, A,C, B and D, respectively. The following nonsingular
congruence transform ofi/, N) gives a new matrix pencil

JwE — A
For simplicity, we further denote

—o-1|B u I I I I
Z.—Qw |: —CT vl (9) (M/,N/): |:I _I:|(MﬂN)|:I _[:|
Becausey is not a singular value oD, we can prove that — 2X -2y 2E .
-D ~I 7. i i 2X +2Y ’ 2E
~I DT is a nonsingular matrix, thus no non-zero a7

vectors are contained in its null space. Since neithetor Because the above nonsingular congruence transform does no
v is zero, the right-hand side of (8) is non-zero, which furth&€hange the generalized eigenvalugs, € A(A', N”) if and
implies » is a non-zero vector because it is a factor of th@nly if jw € A(M, V). On the other hand, we have proved
left-hand side of (8). Pre-multiplying both sides of (8) byhe equivalence ofiw € A(M,N) with v € o(S(jw)) in

B -D Al -1 Section III—A, therefore, ify € o(S(jw)) we also havejw €
_oT || 41 —DT would lead to MM’ N"), ie.,
—jwkE X—Y][wl} {wl}
B -1 ) =0, #0. (18)
[B cﬂ][? 39} FYBJZZQ“'GW {X+Y e .

" Assuming X — Y being invertible, we getws = jw(X —

Because Y)—lEg}l from the upper part Qf (18). Here, is nonzero
) (otherwisew is also zero). By virtue of this, (18) reduces to

M — jwN = [B —CT} [;? _gT] [C BT] - Q. [M), — w? Ny ] wy = 0. (19)

_ Therefore,3 = w? € A(My, Ny,) if v € S(jw). Analogous

(10) can be rewritten as to S-GHM, the converse can also be proved. Setting=
_ jw(X —Y)"'Ew; we can reach (18) from (19). And then

Mz = jwNz. (11)  usingA(M, N) = A(M’, N') we can return to Theorem 1m

o ) ) ] ] Note thatS-parameter HGHM only requires the DS transfer
Therefor_egw |s§\purely imaginary generalized elgenvall_,le 9atrix S(jw) to be symmetric, and it does not pose any
the matrix pencil(M, V). To prove the converse, we define rostrictions on the symmetry of the system matrices.

-1
| DAL ¢ _ | 2 IV. PASSIVITY TEST OFDSs
z ’)/I 7DT BT z v (1 )
A. Passivity Test of S-Parameter DSs
which is a factor for the left-hand side of (10). Hare v’ € In passivity test, we are interested in the special case of

C". Becausef), is nonsingular and: # 0, the right-hand v = 1, which represents the boundary of passivity violations
side of (10) and thus’ should be non-zero vectors. Preof an S-parameter DS. By setting = 1, from S-GHM [in

- C (7)] we get a passivity test matrix pen¢id/, N) = (Mg, Np)
multiplying (10) by [ for scattering DSs with

C’ 1 B , 7D ,_YI , 1\40:./\/‘7 NOZN (20)
T | % T|Z = r|Z. (13) : I R
B -C vI —-D Here M is the Hamiltonian matrix defined in (3). Analogously,
for symmetric cases, from S-HGHM [in (14)] one can get a

half-size passivity test matrix pendil;,o, Nyo) defined as

BT} Q! would lead to

From (13), we can gef(jw)u’ = vv" and S*(jw)v" = yu'.
Because neither, nor v’ is zero (otherwise both of them
and thusz’ should be zero vectors), is a singular value of Mpo=A—B(D-1)"'C, (21)
S(jw). ] Nwo=E[(B(D+1)'C - A"'E.
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Fig. 1. lllustrative examples for different kinds of DSs. faglobally strictly passive DS. This DS has no crossover {soand its transfer matrix is always
unit-bounded. (b) A consistently nonpassive DS. This DSsduet have any crossover points, but it is nonpassive at aguéncy point. (¢) A DS with
locally passive and nonpassive regions. This DS is nongagsiintervalsle = (w1,w2), l4 = (w3,w4) andle = (ws, we).

TABLE | L. .
APPLICABILITY OF DIFFERENT PASSIVITY TESTS B. Passivity Test of Hybrid DSs
System model | S-GAM | S-HGHM | Hamilionian | Half-size A I_mea_r LTI system_w!th a hybrid transf_er mat_nx is (_stry:)l
method | singularity | passive if and only if its transfer matri¥l(s) is (strictly)

singular system yes yes no no positive real [25]:

regular system yes yes yes yes . )
asymmetric systen]  yes no yes no 1) H(s) _has no poles ”R?(_S) > 0;
symmetric system|  yes yes yes yes 2) H(s) is real for all positive reak;

3) H(s)+ H*(s) > 0 (> for strict positive realness) for
all Re(s) > 0.

If the matrix pencil(My, No) (or (Mpo, Nio) for symmetric  Given a square transfer matrit (s) with det(7 + H(s)) # 0

DSs) has any purely imaginary (or positive real) generdlizgor all Re(s) > 0, its Moebius-transformed function is [34]
eigenvaluejw (or 8 = w?), thenw is a crossover frequency

point where passivity violation happens. G(s)=(I—H(s))(I+H(s))"". (22)
Note that the scattering DS of interest may still be non: . . o

passive even though no crossover points are computed vi:jfsljé) IS Evgrtlble, a realization of(s) = Cs(sEs —

GHM or S-HGHM. To further identify the possible nonpassivé45) s+ s 1S

regions, the following procedures could be used. Es=E, As=A— B(I+D)"'C, Bs = —2B(I + D)~}
1) If no crossover points are found, chegkjw,) at an ar- Co = /2(I +D)LC. Do = (I — D)(I + D)1
bitrarily selected frequency poiny. If ||S(jwo)|| < 1, § \f( +D) » Ds = ( W +D) (23)
the DS is globally strictly passive [as illustrated in Fig. koonversely,H (s) is also a Moebius-transformed function of

(2)]. Otherwise, if||S(jwo)|| > 1 the DS is nonpassive ;(s). For Moebius transformation, the following properties
at any frequency point [as shown in Fig. 1 (b)]. hold [34].

2) If S-GHM/S-HG_HM test_ produge@ crossover points 1) Let H(s) = C(sE — A)~'B+ D be a positive real DS
w1, wa, ...,wp Which are increasingly ordered, one can

X o B transfer matrix with nonsingular+ D, then its Moebius-
fﬁ;‘:g{f Jerz:ivmglsgglpil(%tz?)(lz_—:1(,(*)2‘,7.;., 5 SLl}grs;Jc:h tra_msformed functiorG(s) is bounded real.

A S : 2) Given a bounded real DS transfer matdX(s) =
2,...,pandl,1 =(wp,00). If ||S(j@r)|| < 1, the DS is Cs(sEs — Ag)—1Bg + Ds with I + Dg being non-
passive in the interval,; otherwise, it is nonpassive in siﬁgulrfr andsdéj +SG(5))S;£ 0 for all RSe(S) S0 its
L. An illustrative example is given in Fig. 1 (c). '

Moebius-transformed functio/ (s) is positive real.
If the DS in (1) is a regular system (whénis invertible), it

b q dard delAvith Since D usually has a much lower dimension thahand

can be converted 1o a standard state-space modelAv . A, the above transformation is very cheap. If we €&@)

Sub;equgntly, fora regulgr system, the generalized eagiemv as a scattering system, théii(s) is passive if and only if

solution |n_the test penu{Mo,_NO) can be repl_ac_ed_ by theG(s) is passive (i.e., bounded real). Therefore, we can test the

;s;znﬂ:;?ilf(;?]?;:alue _cqmputigonm -~ M. Tfhls 'S In fact passivity of H(s) by checking the bounded realness@fs)
passwlty verification (in (3). 0 .SeCt'O’?AD- using S-GHM. Further, we note that

And for symmetric regular systems, substitutifg= I into

the half-size test pencil in (21), the generalized eigamwal G(s)=2(I+H(s)) ' =1

problem reduces to the standard eigenvalue computation of

P [defined in (4)]. Therefore, the Hamiltonian method andhich implies thatG(s) is symmetric if and only ifH(s)

the half-size singularity test in (3) and (4) are the subgats is symmetric. Therefore, S-HGHM can also be used for

special cases) of S-GHM and S-HGHM, respectively. symmetric hybrid cases after Moebius transformation.

(24)
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C. Comparison with Traditional Approaches

Algorithm 1: Passivity test by S-GHM/S-HGHM.

Table | compares the applicability of different passivity 'MPut:

An LTI model ¥ : (E, A, B,C, D), with E; A € R"*™,
B,CT ¢ R"*™ and D € Rm*™,

testS. There are some dlStInCtIOﬂS among S'GHM/S'HGHMOutput The passive regiongpassiue and nonpassive regions

approach with traditional Hamiltonian method and halksiz

singularity test: 1) S-GHM/S-HGHM can be applied to both €9

singular and regular LTI models, while Hamiltonian method
and half-size singularity test are only applicable to ragul
systems; 2) S-HGHM and half-size singularity test are ex-
clusive to symmetric models, but their full-size countetpa
can be used for general cases without symmetric restrtion
3) S-GHM and S-HGHM search for the passivity violation
points via generalized eigenvalue calculation, whileitradal
methods use standard eigenvalue computation; 4) Due to the
half-size nature, S-HGHM and half-size singularity test ar
8x faster than S-GHM and Hamiltonian test, respectively; 5)
As will be discussed in Section IV-D, S-GHM/S-HGHM can
test the LTI models with — DT D being singular, whereas
the traditional approaches fail to work.

D. Numerical Issues

1. The requirement of ¢ o(D) limits the applications of
Hamiltonian method and half-size singularity test. For ISANG
and S-HGHM this restriction can be removed after a small
modification called equivalent model conversion [1], [2heT
basic idea is to construct a new D8(jw) = C'(jwE' —
A"TIB' + D', such thatS’(jw) = S(jw) and1 ¢ o(D').

S’(jw) can be constructed in different ways. In this paper,
S’(jw) is constructed, if necessary, as
/ E / A ) B
E = = B =
T O B S E

C'=[C al-D], D'=al

with o € R and|«a| # 1. Subsequently, the passivity 51jw)
can be checked by performing S-GHM/S-HGHM 8f(jw).

2. With the equivalent model conversion in (25), the restric
tion of /4 D being nonsingular in Moebius transformation can
also be removed.

Unonpassive-
n
1. Initialization: setUpqssive = Unonpassive = 0
2.if ¥:(E,A,B,C, D) is a hybrid systenthen
| perform Moebius transform (23) and updaie
3. Compute crossover points.
if 1 ¢ o(D) and E is nonsingularthen
if X is symmetrichen
compute the crossover points by half-size singularity test
@
O + {w1,...,wp}, Where thep crossover pointss, ...,
wp are increasingly ordered.
else
compute the crossover points by traditional Hamiltonian
method (3);
O +— {w1,...,wp}.
else
if 1 € o(D) then
| perform equivalent model conversion (25), update
if X is symmetrichen
compute the crossover points by S-GHM (20);
O + {wi,...,wp}.
else
L compute the crossover points by S-HGHM (21);
O+ {wi,...,wp}.
. Locate the passive/nonpassive regions
if © =0 then
computeS(jwo) (the transfer matrix o&) at wo
if ||S(jwo)|] < 1 then
Upassi’ue = [0,00);
system is strictly passive, return.
else
t Unonpassive = [07 00);
system is consistently nonpassive, return.

N

eise
el — [0’“’1)7[2 <~ (WLWQ): -"7‘617 <~ (wp—lva)’ZP‘l’l —
(wp, 00).
fori=1,..,p+1do
computeS (jw;), with w € 4;;
if [|S(jwo)|] < 1 then
‘ Upassive =
else
L Unonpa.ssive -

passive U £y

nonpassive U Zz

3. In S-HGHM passivity testd — B(D+1)~1C is assumed
to be nonsingular, which is equivalenttat A(S(0)). A proof
is given in the Appendix.

4. The “purely” generalized eigenvalues @¥/,, Ny) may
appear as conjugate paixg = ar tjbx (ar, br € R). Hereay
is the numerical noise induced by the finite machine pregjsio
which is also observed in traditional Hamiltonian method][2
A small numerical tolerancénl > 0 can be used to eliminate

TABLE Il
S-GHM/S-HGHMTEST RESULTS FOR THE ORDER} DS.
A(Mo, No) (jw) | AMMno, Nno) (B) | VB (rad/sec)

5.5e-7T +£5304491.7 92715196749 304491.7
2.05e-14 +522.86 522.6 22.86

the noise, and only those solutions wiitf}| < tol are regarded » A Synthetic DS Model

as expected results.

The proposed passivity test is summarized in Algorithm 1, 10 show the complete test flow, we consider the bounded

realness of the following order-4 single-input singlepuit

(SISO) Ds:
ri —4
V. EXAMPLES B 1 T —120 . ’
This section presents some numerical examples to verify L 0 1 26)
the validity and effectiveness of S-GHM/S-HGHM fa#- o1
parameter and hybrid DSs. All examples are tested in MAT-B = (1) , C=[10 200 107° 0], D=-1.
LAB R2006a on a 2.66 GHz 2G-RAM PC. | 105
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Fig. 2. S-GHM and S-HGHM test results for the order-4 DS model. E e Tgr_desgn,aféa_wgﬁa sl
1.2r-
E ; ;
) i ) C>5 1/ v v e S|
The transfer function of this DS is 5 osf
, 10 200 , 3 ool
S(jw) = - + - — 14+ jwx1071  (27) 2 ‘
jw+4  jw+ 120 D O s o
Solving the equation Angular frequency (rad/sec)
1S(w)| =1 (28)

Fig. 3. S-GHM and S-HGHM test results for the three-termingfi
we get two crossover frequency points:= 22.86 rad/sec

andw = 304491.7 rad/sec. Then we use S-GHM/S-HGHM . :
to compute the crossover points. Note that in thisDS= —1, Then S-GHM and S-HGHM tests ofy(jw) also give 9

. . crossover points shown in the third and fourth columns of
so we need to use equivalent model conversion in advance

which produces an order-5 DS (jw) with D' — 0. Since the able 1ll. Table Il shows that the experimental results bf a

transfer function is symmetric, S-HGHM can also be applietcfll1e four methods pinpoint the same boundary frequency point

for passivity test. The computed results of S-GHM and g\_/mch coincides with the singular value curves of the transf

HGHM are listed in Table Il. The results of S-GHM and S[natnx in Fig. 3.

HGHM coincide with the solutions to (28), which is illusteat _ _
in Fig. 2. Therefore, this scattering DS is bounded real fa- A Symmetric Admittance PEEC Reduced Model

the angular frequency band @22.86,304491.7), and it is This example is used to show the validity of S-GHM and

nonpassive in the bands ¢, 22.86) and (304491.7, co). S-HGHM in the passivity test of admittance or impedance
DS models. The original SISO model is an order-480 DS
B. A SymmetricS-Parameter Three-Terminal Filter describing a patch antenna structure with admittance peteam

) _ ) ) as its transfer function, which is obtained by partial elatne
We use a three-terminal filter with symmetric port responggyuivalent circuit (PEEC) method [36]. This PEEC model is

to illustrate the application of S-GHM/S-HGHM and th%onpassive, which may be induced by poor meshing gener-
connection to their standard state-space counterparts. Hgon, inadequate numerical integration, matrix spassife
frequency-dependent scattering parameters are meastregy anappropriate geometrical discretization [37]. Aftendel
1601 sampling points ranging frofidMHz to 6GHz. Since it order reduction via PRIMA [13], an order-53 reduced model
is impulse-free, the input-output response can be desthpe is gptained, which is nonpassive in the low-frequency band.
either a standard state space or a DS. To use the traditionatince this model is a hybrid system, S-GHM and S-HGHM
Hamiltonian method and half-size singularity test, we firglan not be directly used. The Moebius-transformed system
build an order-120 standard state-space mddelB,C,D) s first constructed by (23), and then its transfer function
by vector fitting [15] with 40 common poles. Both the tradi-c;(s) is tested by S-GHM and S-HGHM, respectively. The
tional Hamiltonian method [20] and the half-size singulari computed crossover points are listed in Table IV. Fig. 4 show
test [23] show that this model has crossover points. The the magnitude of the Moebius-transformed transfer functio
imaginary eigenvalues of\ and the positive real eigen-gquals unity at the computed crossover points. To show
values of P are illustrated in the first and second columnge validity, the real part of the original admittance tr@ns

of Table Ill, respectively. The obtained standard sta®&esp fynction H(jw) is also plotted in Fig. 5, which shows that
model is then converted to a DS mode},(jw) described by the proposed S-GHM and S-HGHM methods have accurately
(Ea, Ad, Ba, Ca, Da), via the following transformation found the passivity violation points of this hybrid DS.

B — I120 A, — A
4= 0> I - D. A Multi-port DS Model

B, — B co—[C D Dy —0 (29) This example is used to verify the validity of S-GHM and S-
A I O [ N } v Hd = HGHM in general multi-port DS models, and to compare their
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TABLE Ill
EXPERIMENTAL RESULTS OF VARIOUS PASSIVITY TESTS FOR THE THRETERMINAL FILTER MODEL.

Hamiltonian method:
imaginary results of\(M)

Half-size singularity test: positive real
results of \(P) /crossover pointsriad/sec)

S-GHM: imaginary
results of \(Mo, No)

S-HGHM: positive real results of
A(Mpo, Npo)/crossover pointsriad/sec)

6.9e-10 £5112253

12600780132/112253

2.17e-7 +5112253

12600780132/112253

2.6e-10 +742988.4

18479990052/42988.4

2.5868 ;429884

18479990052/42988.4

1.3e-10 £538173.7

14572294488 /38173.7

1.06e-5 +538173.7

14572294488/38173.7

2.2e-11 +534551.3

1193794989.3/34551.3

2.93e-8 +534551.3

1193794989.3/34551.3

4.0e-12 £53109.22

9667288.145/3109.22

2.80e6 £;3109.22

9667288.145/3109.22

2.1e12 £71631.07

2660378.573/1631.07

6.02e-7 £71631.07

2660378.573/1631.07

3.0e-10 £515871.8

251914404.4/15871.8

1.85e-8 +515871.8

251914404.4/15871.8

8.7e-11 £79879.71

97608669.57,/9879.71

5.17e-7 £59879.71

97608669.67,/9879.71

8.5e-11 £79895.29

97916796.34/9895.29

5.20e-7 £59895.29

97916796.34/9895.29

(@)

o oo — Magnitude of G ) PR ‘ ‘ ‘ /| —Real part of H()
S oo ¢ S-GHM/S-HGHM results 3 ¢ S-GHM/S-HGHM result
g 0.04 T 2
(D 0.02 qa N
° "% 0
% -0.02 o 1
‘é‘ -0.04 g -2
g -0.06 X -s
S oo ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
[ 0.5 1 15 2 25 3 35 4 45 0 0.5 1 15 2 25 3 35 4 45
I Angular frequency (rad/sec) ' Angular frequency (rad/sec)
1 Zoom in (b) o ; b — :
o o ; ‘ ‘ —— Magpnitude of G@) (X10° Zoom in ‘ (b) Real part of H@)
z | ¢ S-GHM/S-HGHM results 2 ¢ S-GHM/S-HGHM result
) T 7 ]
051 4
2 5 o ,
O o 1 fu
) ]
o a o ]
> -0.5F i i
= ]
c Ll | Q -2r ,
2 04
2 7%)'.55051 05(‘)51 05;351 0.5‘051 05;351 05‘051 0.52)51 0.5‘051 0.5051 6.‘"5051 0.5651 05(")51 0.5;351 0.5651 05(‘351 0.5;351 0.5651 05(‘351 0.5051
Angular frequency (rad/sec) Angular frequency (rad/sec)
Fig. 4. S-GHM and S-HGHM test results on the Moebius-tramséml Fig. 5. The real part of the transfer function of the origirater-53

transfer function of the order-53 admittance reduced model.

TABLE IV

admittance DS model. The dots are the results from S-GHM an@GHEM
tests, which are accurately located at the boundaries afvigsviolations.

S-GHMAND S-HGHM TEST RESULTS FOR THE ADMITTANCE REDUCED
MODEL (ON THE MOEBIUS-TRANSFORMED SYSTEN).

A(Mo, No) (jw)

A Mno, Nno) (B)

TABLE V
CPU TIME COMPARISON OFS-GHM AND S-HGHM (IN SECOND)

VB (rad/sec) Model Size | Port Number| S-GHM | S-HGHM [ Speedup
1.309e-11 +,0.505080 0.255103 0.505080 1030 60 241.2 30.45 7.02
1.307e-11 +;0.505082 0.255110 0.505082
1.127e-13 +;1.234402 1.523749 1.234402
3.650e-13 £52.465012 6.076287 2.465012
3.169e-13 £;2.560446 6.555922 2.560446 nature and theD(n3) complexity of generalized eigenvalue
7.587e-13 £74.074095 16.59825 4.074095 calculation.

VI.

1) S-GHM and S-HGHM are purely algebraic passivity ver-
ification with similar accuracy to Hamiltonian method
and half-size singularity test. Therefore, they are much
more reliable and accurate than frequency sweeping
methods, which has been verified by their hybrid coun-
terparts [2]. Compared with Hamiltonian method and
half-size singularity test, S-GHM and S-HGHM are not
restricted by the restriction o matrix, as verified by
the synthetic example.

numerical efficiency. The order-1080 symmetric DS model REMARKS

has 60 ports, and it is built from the measur&¢garameter
data of an electronic system, via the DS-format Loewner
matrix fitting [16], [17]. Using S-GHM and S-HGHM tests$
crossover points are obtained, which are plotted in Fig & Du
to the large amount of crossover points, they are not listed b
table. Clearly, Fig 6 (b) shows that the computed results are
very accurate. We have listed the CPU times of S-GHM and
S-HGHM tests in Table V. It is clear that S-HGHM is about
8x faster over S-GHM, which is expected due to its half-size
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@ } ¢ S-GHM/S—HGHM result# VII. CONCLUSION

1 We have extended GHM and HGHM theories &

1 parameter DSs, which reflect the relationship of the sirgula

values of a DS transfer matrix with its operating frequency.

With the proposed methods, the passivity Sfparameter

and hybrid DSs can be efficiently assessed, and the pas-

sive/nonpassive regions can be accurately located. For sym

metric DSs, S-HGHM enjoys higher numerical accuracy and
e e o o an 8x speedup over S-GHM.

l Angular frequency (rad/sec)

Zoom in (b) | ¢ S-GHMIS-HGHM result# APPENDIX

\\ In S-HGHM passivity test, the assumption df— B(I +

D)~1C is equivalent to déf — S(jw)] # 0 at the DC point
* Angular frequency (rad/sec)

I
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Singular values of S()
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o
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T

-
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T

(i.e., w = 0). The proof is as follows.
Proof: Firstly, we assume thatl — B(I + D)~C is
singular, then there exists a vectosuch that

[A—B(I+D) 'Clp=0 p#0. (30)
Since A is nonsingular, the above equation is equivalent to

AT'B(I+ D) *Cp =np. (31)

o o

© ©

® & e
T

Singular values of ()
o

14
©
&

Fig. 6. S-GHM/S-HGHM test results for the multi-paft-parameter DS Denote( + D)~'Cp by ¢, which should be a nonzero vector

model. The dots are the results from S-GHM and S-HGHM testichware  [otherwise,p # 0 in (31)]. Pre-multiplying both sides of (31)
accurately located at the boundaries of passivity viofetio by C yields

CA™'Bq= (I +D)q, q#0. (32)
BecauseS(0) = D — CA™!B, (32) can also be written as

2) As illustrated in Tables Il to 1V, the numerical results of [[=5(0)]¢=0, ¢#0 (33)
S-GHM and Hamiltonian method contain some numeiyhich shows! — S(0) is singular [i.e.,1 € A(S(0))].

ical noise in the real part, which can be eliminated by Next, we start with (32) to prove the converse. Since the
setting a tolerance. S-HGHM and half-size singularityight side of (32) is nonzero (because o(D) andg # 0), we

tests do not suffer from this problem. From the numerﬂenotep’ = A~!'Bg which should also be nonzero. Equation
cal perspective, they are more accurate over the full-siggp) is equivalent to

S-GHM and Hamiltonian methods. I
3) Due to the half-size nature and tlign?) complexity (I+D)"CA"Bqg=q. (34)
of (generalized) eigenvalue computation, S-HGHM angye_multiplying this equation byl—' B we get
half-size singularity test are>8 faster than their full-
size counterparts. This has been verified by the results AT'B(I+D)~'Cp' =yp', p' #0. (35)

in [2] and [23] and the CPU timings in Table V. S-GHMHence A— B(I + D)~'C is singular =
and S-HGHM algorithms presented here are based on ' '
full-matrix eigensolver, so they are feasible to medium- REFERENCES
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