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Abstract—Uncertainties have become a major concern in uncertainty quantification (UQ) problems require speréti
integrated circuit design. In order to avoid the huge number stochastic solvers to estimate the underlying statistital-
of repeated simulations in conventional Monte Carlo flows, this mation by detailed transistor-level simulation. The mazem

paper presents an intrusive spectral simulator for statistical . . .
circuit analysis. Our simulator employs the recently developed transistor-level simulators such as PSpice [20], Cadepee-S

generalized polynomial chaos expansion to perform uncertainty treé [21], and Synopsys HSPICE [22] utilize the well-known
quantification of nonlinear transistor circuits with both Gaussian ~Monte Carlo (MC) algorithm [23] to perform a statistical cha

and non-Gaussian random parameters. We modify the nonintru- acterization. Unfortunately, MC must run repeated trdosis
sive stochastic collocation (SC) method and develop an intrusive level simulations at a huge number of sampling points due to

variant called stochastic testing (ST) method. Compared with the its sl te. Alth h . ts h
popular intrusive stochastic Galerkin (SG) method, the coupled ItS slow convergence rate. ough some improvements have

deterministic equations resulting from our proposed ST method been proposed (such as Quasi-Monte Carlo and Latin Hyper-
can be solved in a decoupled manner at each time point. At the cube samplings [24]—-[26]), MC simulation is still inefficie
same time, ST requires fewer samples and allows more flexible for many circuit UQ problems.

time step size controls than directly using a nonintrusive SC As an alternative, spectral methods based on polynomial

solver. These two properties make ST more efficient than SG and .
than existing SC methods, and more suitable for time-domain chaos (PC) expansions have been proposed to accelerate the

circuit simulation. Simulation results of several digital, analog UQ of circuits with Gaussian random parameters [4]—{9]][27
and RF circuits are reported. Since our algorithm is based on [28]. Spectral methods represent the circuit uncertaniig
generic mathematical models, the proposed ST algorithm can be truncated Hermite-chaos polynomial [29] [which is abbrevi
applied to many other engineering problems. ated to polynomial chaos (PC)] series expansions, and they
_Index Terms—Uncertainty quantification, stochastic circuit compute the PC coefficients by a stochastic Galerkin (SG) [30
simulation, generalized polynomial chaos, stochastic testing or stochastic collocation (SC) [31] approach. The intreHG
method, variation analysis. method solves a coupled deterministic equation by modifyin
an existing deterministic solver to directly compute the PC
. INTRODUCTION coefficients. Alternatively, the nonintrusive SC schemiveso
ARIATION has become a major concern in today'sa set of decoupled equations at some sampling points by
nanometer integrated circuit design [1]. It is well knowmepeatedly calling an existing deterministic solver, daléd
that the uncertainties of transistor threshold voltagege haby a numerical procedure to reconstruct the PC coefficients.
significantly limited the scaling down of the supply voltage&Since the truncated PC expansion converges very fast when
in low-power design [2], [3]. Meanwhile, manufacturing unthe solution dependence on the random parameters is smooth,
certainties can remarkably influence the performance of ospectral methods have shown remarkable speedup over MC
chip interconnects [4]-[11], leading to timing variatiofi2], when the number of parameters is small or medium. In the
[13]. These device-level uncertainties can propagate & tbontext of EDA, most work has been focused on applying SC
circuit or system level, and finally influence chip perforrcan and SG to solve the linear stochastic equations arising from
and yield [14]. Therefore, new electronic design autonmatianterconnect analysis [4]-[9], whereas only a limited nemb
(EDA) tools are highly desirable to model and simulate thef publications have discussed nonlinear circuits [278B][2
uncertainties at different levels [4]-[9], [15]-[19]. In [27], SC is combined with PC to simulate RF circuits
One bottleneck lies in propagating the effect of unceri@int with Gaussian variations. Later, [28] developed a SPIGiety
from the device level to the circuit or system level. Suchtochastic simulator for nonlinear circuits. The key ideda
. . construct some stochastic library models for both lineat an
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Chaos (gPC) [32]-[34], spectral methods can now be applieristing spectral methods for stochastic circuit simolatias

to physical models with non-Gaussian variations, and extemell as gPC. Section Il presents our intrusive ST simulator

sive results have been reported [34]—-[42]. Unfortunatilgre and its numerical implementation. In Section IV, gPC-based

seems to be limited research investigating the application SG and SC are briefly extended to nonlinear circuits and

gPC to EDA problems. In [41], gPC was employed with SC toompared with ST, and we further classify various stochasti

construct linear stochastic models for electromagnetiicéds. simulators. Section V provides some circuit simulatiorutess

Later, gPC-based SC and SG were applied to the UQ afid discusses the speedup of ST over SC in detail.

linear circuits with Gaussian and non-Gaussian variatid8k

However, directly applying existing SG or SC methods t0 || REvIEW: STOCHASTIC SIMULATORS AND GPC

circuit problems can be inefficient, as will be discussed in ) ) L

Section IV and demonstrated by the examples in Section . L€t us consider a general nonlinear circuit with random
Among various SC methods, there exists a special kif@@meters. Applying modified nodal analysis (MNA) [43], we

of SC scheme [35]-[38] Different from the mainstream scO tain a stochastic Differential Algebraic Equation (DAE)
methods using sparse grids or tensor rules, this SC scheme dilz(t.€) €
. . : q(x(t,f),f) . N
uses the same number of basis functions and sampling nodes 47 (f (t@) 75) = Bii (1) (1)
to construct a coupled deterministic equation. The resuylti dt
equation can be decoupledpriori with a transformation [35] wherei(t) € R™ is the input signalZ ¢ R” denotes nodal
and then solved by repeatedly calling existing determimistvoltages and branch currengge R” andfg R™ represent the
solvers. Combined with gPC, this nonintrusive method hagarge/flux term and current/voltage term, respectivebgtdt
been used for the UQ of the nonlinear dynamic syster@s: [€1;E; -+ &] denotes random variables describing the
arising from multibody problems [35] and of linear diffeteth  device-level uncertainties assumed mutually independent
algebraic equations (DAEs) from linear circuit analysi8][3 this paper, the port selection matidxis assumed independent
In [38], the tensor product rule is used to construct thef the random parametets We focus on how to solve (1) to
basis functions and sampling nodes for SC, leading to som@ract some statistical information such as mean, vagiand

computational overhead. probability density functionffDF) of the state vectaF (t7 3 )
Our Contribution. In this paper, we propose a gPC-based

intrusive simulator, calledstochastic testing (ST) for the
UQ of transistor-level simulation. This work is a varianttbé A. Monte Carlo Method
interpolation-based SC [35], [38]. Our work uses a collmrat  Monte Carlo (MC) is the most widely used UQ tool, and
testing method to set up a coupled equation, and decouglingtiis implemented in almost all commercial circuit simulato
used to accelerate the computation. However, our ST siowlain MC, N, samp|eg{1, e st are first generated according
differs from the previous work in the following aspects: to PDF(£), the joint Probability Density FunctiorPOF) of
1) Different from the nonintrusive SC in [35], [38], ouré. Any available deterministic solver is then called to run a
proposed method is an intrusive simulator: the resultirgimulation at each sample, generating a set of deternunisti
coupled equation is solved directly to obtain the spectraplutions. Finally, all deterministic solutions are w#d to
coefficientswithout decouplinga-priori. To distinguish compute the statistical characterization of interest. &her
our simulator with the intrusive SG and nonintrusiv@f MC is proportional IO%\,; Very often, a huge number
sampling-based SC, we call it “stochastic testing” (STfthousands to millions) of samples are required to obtain th
2) ST uses fewer testing nodes than the mainstream 8€sired level of accuracy even when improvements on sam-
algorithms [31] (which use sampling nodes from tensging point selection, such as Mixture Importance Sampling
products or sparse grids) and the recent work in [38Ruasi-Monte Carlo and Latin Hypercube sampling [24]-[26],
leading to remarkable computational speedup. ST prare used. The excessive number of samples render the répeate
vides extra speedup in time-domain simulation, since tisémulation prohibitively expensive in many cases.
intrusive nature of ST allows adaptive time stepping.
3) Decoupling is appliednside the intrggive solver. T'hig B. PC-based SG and SC Methods
makes our solver much more efficient over existing

intrusive solvers such as SG without sacrificing flexible N the EDA community, most existing spectral stochastic
time stepping controls. simulators focus on linear circuits with Gaussian parame-

Our algorithm is implemented in a SPICE-type stochast'fgrS [41-{3] by considering the following linear stochadDAE

simulator and integrated with several semiconductor @evic di (tf)

models for algorithm verification. The proposed method can E (g) N2y (5) z <t7{) — Bu(t). )
be applied to many general engineering problems as the dt

mathematical derivation is very generic and does not magenceg contains only Gaussian parametef: ,t,{ can be

any restrictive assum ptions in t.h e stochastic _DAE s well approximated by a truncated Hermite expansion
Paper Organization. In section Il we review MC, the

K
1The authors would like to thank the anonymous reviewer fontimj out T (t, g") ~ Z Tp(t)Hy, (E) 3)
the related work in the mathematical community, specifically. [35], [38]. 1
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TABLE |
UNIVARIATE GPCPOLYNOMIAL BASIS OF DIFFERENT RANDOM PARAMETERY34].

Distribution of &, PDF of component, [px(£x)]T | univariate gPC basis functiop;, (€,) | Support of¢,
— 2 . .
Gaussian \/% exp (%) Hermite-chaos polynomial (—00, +00)
& Texp(—£x) :
Gamma "“W, ¥>0 Laguerre-chaos polynomial [0, +00)
a—1 B—1
Beta %, a,8>0 Jacobi-chaos polynomial [0,1]
Uniform % Legendre-chaos polynomial (—1,1]

0o 1
1T (y) = [tV texp (—t)dt andB (o, 8) = [t*~1 (1 — ¢)?~! dt are the Gamma and Beta functions, respectively.
0 0

—

where Hy(£) is an orthonormal multivariate Hermite polyno-which has totallyX™ basis functionsk is given in (4)]. In (7),
mial [30], andzi (t) the PC coefficient. If the total polynomial - .. . ... ; RIS
order isp, then the above Hermite expansion uses i=linsizs- - ;] IS the index vector W””Z'—k; ], integer
Pl (p+1)! i, the highest order of;, in H;(f). The mean value and
K= ( > = (4)  standard deviation afi(¢,t) are easily calculated as:

p pll!
basis functions in total to approxima&c, ¢). E (f (t,f)) = (1), 1] =0
In the intrusive SG method [30], the Hermite expansion (3) o/ o P ) (8)
is first substituted into (2). Applying Galerkin testing, S€is g (I (t’ 5)) ~ [ 2 [

up a coupled equation of dimensiari. The PC coefficients

are then directly computed by solving this coupled equation In PC and gPC, the random parameters are assumed mutu-
The nonintrusive SC method [31] first selects a set @fly independent. For general cases with arbitrary prdipabi

sampling points according to some rules (such as Gaus¥easures, constructing orthogonal basis functions is much

quadrature tensor product rule or sparse grid rule). At ea@fore involved. A nice approach is proposed in [44], however,

sampling point, (2) is solved as a deterministic equatiogetb its numerical implementation is not trivial. In this papae

a deterministic solution. After that, a post-processimpstuch keep the assumption that all random parameters are mutually

as numerical integration is applied to get the PC coeffisientndependent, and we apply gPC to develop more efficient UQ
tools for nonlinear transistor-level circuit analysis.

C. Generalized Polynomial Chaos (gPC)

G_ene_rallzed polyqo_mlal chao_s (GPC) [32]-{34] is a 98N gince there is a one-to-one correspondence between
eralization of the original Hermite-type PC [29], and it ca . -
) . < K and the index vectoi, we denote
handle both Gaussian and non-Gaussian random parameters

IIl. STOCHASTICTESTING SIMULATOR

I K

efficiently. A multivariate gPC basis functiof;({) reads - ) .
z 2(t,) =k (t)Hy(S) 9)
5 k=1
H? = Tk ) 5 . = . .
! (5) g¢ (&) ®) for convenience. NowH(¢) denotes thek-th multivariate

orthonormal gPC basis function of (7). Replacing the exact

where ¢; is a univariate orthonormal polynomial of = . .
P (&) POty solution # (¢, £ ) in stochastic DAE (1) with the above trun-

degreei;.. The specific form of;, (£x) depends on the density . . i )
function of &. Table I lists the correspondence betweef2t€d 9PC expansion yields a residual function

some typical univariate gPC polynomial basis, (£;) and dq—»(in(t £) g)
the probability distributions of;, [34]. Res(X (1), &) = i F (@(t,g),g) — Bi(t).
In the stochastic spacf, the inner product of any two dt (10)
general functiong), (5) andy, (f) is defined as Now the unknown vector reads
. . . . N X(t)=[21(); - ; éx (1) €RY, with N =nK.  (11)
(1 (&) e () = [ POF (&) 2 () () € @
Q A. Basic Idea of the ST Method
The normalized gPC bases have the the orthogonality psopert In order to computef (t), ST starts from (10) and sets
S S up a larger-size determined equation by collocation tgstin
<H€ (5) , H <§)> =077 Specifically, ST selectsk™ testing (or collocation) points

B K : - :
With gPC, one can also approximate a second-order stochabti " F]g ! theln |L.enforcehs t]t\e" re§|dugl f””CF"?“ _to[?:Ez.ero
processi(€, ) by an orderp truncated series at each point, leading to the following deterministic :

Z(t, &) ~ T <(€) de X(t) v 3
(t,€) |zz<:p 7(H) HH(S) @ w Y F (X (t)) = Bii (1) (12)
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Newton’s iterations
solve J (Xi) A)Z'fc =- (Xfc) ,
update X,Z,H = Xzé + AX,Z,

(14)

until convergence. Here?()?,z) is the Jacobian matrix of
R(X7). Fig. 1 shows the structure of (X/) from a CMOS
low-noise amplifier (LNA) withn=14, [=p=3 and K=20.
Clearly, all off-diagonal blocks are filled with non-zerobsu
matrices. As a result, directly using a matrix solver to catep
AX’,JC can be inefficient. If a direct matrix solver is employed,
Fig. 1. Structure of the Jacobian matrix in ST-based simulatith =  the linear system solution costy N%) = O(K3n?); when an
p=3andK = 20. iterative method is applied, the costrisO(K?n) wheren is
the number of iterations.

The coupled linear equation in (14) is instead solved in a
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with decoupled manner. We rewrite the Jacobian matrix in (14) as
7 (a8 B J(X]) = FE)M. (15)
Q ()Z (t)) = : ,B=|: Matrix .7 (X/) has a block-diagonal structure:
7 (a(t,89),€¥ B ) J(X9.8Y
7 (at.€h,8 J(X) = . ae
F(X@)= : : J(X], %)
f(@(t,{Kt),fK) Let 257 denotes thew,-th gPC coefficient vector i}, then
The collocation testing used in ST is the same with that useg (¥ Xi.6) = 85(2 ) + 0 (:75) . (17)
in collocation-based integral equation solvers [45]. Hosve o o - f: BRI HL (6
in stochastic computation, “stochastic collocation” nmgean ngz1 22
different sampling-based method (c.f. Section IV-B). Eer The matrix M is
fore, we name our proposed method as “stochastic testing”. (& o (6
There remain two important issues, and how to address them &) K (&)
distinguishes our ST solver with the nonintrusive stodhast M =@ ® I, ¢ = : : (18)
solvers in [35], [38]. The first issue is how to solve the Hl(EK) HK(EK)

resulting coupled DAE. ST directly solves (12) by an intvesi )

solver. As a result, the gPC coefficients can be directly COIW-here ® deno_tes the_ KI’OﬂeCIEETK product operation. The
puted and adaptive time stepping [46] can be used. The sec .dermo.nde-hke ma‘.”@ < R on[y depends on the
issue is how to select the testing nodes. ST selattesting ©5uNg points and basis functions. The inverselbfis
points from some candidate nodes, wher@as1)">>K nodes M '=0"'01,., (19)

are used in [38] to make the transformation matrix inveetibl ) )
which can be easily computed because: d)is of small

size; and 2) fast inverse algorithms exist for Vandermonde-
B. Intrusive Decoupled Solver like matrices [47]. Both® and ®~! are calculated only once

ST | . . imulator: th led DAE i egwd then reused for all time points.
IS an Intrusive simulator: the couple IS Passed rinally, the linear equation in (14) is solved as follows:

into a specialized transient solver to directly compute the e .y

gPC coeaficients, and matrix structures are prloitg)d sid D Splvej(X,i)Az - —R(X,{,) for Az. Due to ”;e block-

Newton'’s iterations to obtain simulation speedup. As a demo d!agonal structtfre, this step costs QIRSO (n?) for a

stration, we consider backward-Euler integration. Otlypes direct solver orKO(n) for an iterative solver. ;

of numerical integration schemes (e.g., Trapezoidal om@Gea 2) Cal?ulate Fhe sparse matrlx-vectoriPr_odLmth n

method) are implemented in a similar way inside ST. M~ Az. Since the closed form of/ " is ready, the
matrix-vector multiplication costs onl@ (nK).

Let X=X (tx) andu=1 (t). In the transient solver, DAE i _
(12) is discretized, leading to an algebraic equation The computational cost of ST solyer now he}s only a Ime_ar
dependence o, as contrasted with the cubic or quadratic
R(X}) = ak(Q(Xk) — Q(Xi_1)) + F(Xy) — Bily, =0 dependence when directly solving the coupled linear egnati
The ST solver can be easily implemented inside a com-
with =1 t —. The time step size is adaptively selectedhercial circuit simulator. Inside each Newton’s iteratiome
accordlng "to the local truncation _error (LTE) [20], [46].can convertXJ to a deterministic state variable and then
Starting from an initial guessX’k, X, is computed using evaluate the correspondmg Jacobian and function values fo
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a testing node. Repeating this procedure for all nodésy7) Algorithm 1 Testing Node Selection.
andR(Xj) can be obtained. After that, all blocks are solveds: ConstructN [-D Gaussian quadrature nodes and weights;
independently to obtaid\z and thenAXj. If the Newton’s  2: [, ind]=sort(w, ‘descend’); % reorder the weights
iterations get converged, the local truncation error (LTE) 3. v = f ({k) /\|ﬁ (g;) ||, with k& = ind(1);
checked by an existing estimator [20], [46]. The solution is = = ) .
. L 4 & =&, m=1; % the 1st testing node

accepted and ST proceeds to the next time point if the LTE is _ -

. - . L 5. for j=2,---, N do
bleow a threshold; otherwise, the time step size is redundd a ) AR 5 (2.
X, is recomputed. Since the function/Jacobian evaluation anfi ¥ = ind(j), v =H (fk) 4 (V H (gk))’

linear system solutions are well decoupled, ST can be easily:  if Hg||/|\ﬁ (&) || > 8

implemented on a parallel computing platform. 8 V=[V:d/||d], m=m+1;
o: &m = ¢ % select as a new testing node.
10: if m > K, break,end;

C. Testing Node Selection 1-  end if

The testing nodes in ST are selected by two steps. Eirst, 12: end for
1)! candidate nodes are generated by a Gaussian-quadrature
tensor product rule. Next, onlik’ nodes (withK < p + 1))
are selected from the candidate nodes and used as the fin@) Selecting Testing Nodesk testing nodes are selected
testing nodes. Note thaiy + 1)' sampling nodes are usedfrom the (p + 1) candidate nodes based on two criteria:

in [38], Wh'_Ch are exactly the cgndlldate fiodes oh ST 1) We prefer those quadrature nodes that are statistically
1) Candidate Node Generatiortet &, < €, be a ran- “important”, i.e., those nodes with large weight values;

dom parameter ang(¢) the corresponding PDF. Gaussian 2y The matrixd should be full-rank and well conditioned.

guadrature can be used to evaluate a 1-D stochastic integral . . .
The Matlab pseudo codes of selecting the final testing nodes

n N are provided in Algorithm 1. In Ling, 5 > 0 is a threshold
/9 (k) o (k) dé = > g (fi)wi (20)  scalar. The input vector in Line 2 i8=[[w, |w?|, - , [w™]],
J=1 and the vector-valued functioR (¢) € RE*! is

Q

where & denotes thej-th quadrature point andv) the H(E) = [Hy (&), Ho(E), -+, Hix ()] (25)
corresponding weight. The choice of a Gaussian quadrature
rule depends on the suppdei, and the PDFpy, (&x). The basic idea of Algorithm 1 is as follows. All candidate

With the computed 1-D quadrature points and weights féodes and their weights are reordered such|ihgt> [w/*],
each;,, one can construct multi-dimensional quadrature poingd the first node is selected as the first testing gdd@&hen,
to calculate the multivariate stochastic integral we consider the remaining candidate nodes from the “most
important” to the “least important”. Assuming that — 1
4 N N testing nodes have been selected, this defines a vector space
[o(§)poE (e~ S g (G)w (@)
j=1

o V=span {H(@), - A} (26)

by a tensor product or sparse grid technique [34], [39]. In . ) ., oo
this work, we seth — p+ 1 [p is highest total polynomial The next “most important” candidatg, is selected as a new

order in (7)] and then use a tensor product rule to constr€8tiNG Node if and only i#/(¢x) has a large enough compo-
N = i quadrature nodes in theD stochastic space. Fornent orthogonal td’. This means that the dimensionality of
Y V' can be increased by addigg as a new testing point.

convenience, we define an index matfixc Z'*%, the j-th _ _ _ _
column of which is decided according to the constraint When [ is large, generating and saving the candidate
nodes and index matriZ become expensive. A solution
! is to select the testing nodes without explicitly geneigtin
1+ Z (h— 1) (Z(k,j) 1) =] (22) the candidate nodes GE. First, we generate weight/’s
k=1 and the corresponding inde)s according to (24) and (22),
. o respectively. In thé:-th step, we find thé-th largest weight
Then thej-th quadrature node it is w’ and its corresponding index According to (22), thej-
54 _ [51(1,3') 5z(z,j)] 23) th column of the index_matrizZ can pe calgul_ated, and then
/ Lo ’ we can construct candidate noge Finally ¢; is selected as

where1 < Z (k, j) < & indicates the index of the quadraturé NeW testing node if/(¢;) has a large enough component

point in Q.. The corresponding weight Q@ is computed by orthogonal 'toV, otherwisg it is omitted and not storgd.
There exist other possible ways to select the testing nodes.

‘ l . A recent progress is to generate the nodes by Leja sequences,
w! = H wk( 9, (24) a greedy approximation to Fekete nodes [37]. How to select
k=1 the optimal testing nodes is still an open problem.
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IV. COMPARISON WITHOTHER STOCHASTIC SOLVERS the definition in (17). The Jacobian in SG cannot be decou-

This section briefly extends the gPC-based SG and $t¢d- Therefore, solving the resulting DAE of SG requires
to nonlinear circuit problems and compares them with o@(N?) = O(K?n®) at each time point if a direct solver is
proposed ST algorithm. After that, a high-level classifmat used (ormO(K?n) if m iterations are used in an iterative
of the mainstream stochastic solvers is presented. solver), much more expensive compared to ST.

A. Comparison with Stochastic Galerkin (SG) Method B. Comparison with Stochastic Collocation (SC) Method

1) SG for Nonlinear Circuits:Similar to ST, SG starts from 1) SC for Nonlinear Circuits:Unlike ST and SG, SC starts
the residual function (10), but it sets up a deterministicEDA from the original stochastic DAE (1) without using gPC ap-
the form (12) by Galerkin testing. Specifically, SG enforttes proximationa-priori. SC first selectsV, samplef& e st
residual function to be orthogonal to each gPC basis functicand solves (1) at each sample to obtain a deterministicisnlut

oo > Z(t, €¥). The gPC coefficients are then computed using a post-
<Res (X(t)’g) , Hi <€>> =0 fork=1.-, K. (27) processing step. For example, one can select the saf?ﬁpiead

> > 5 weightw* by a Gauss-quadrature tensor product rule or sparse
Now Q(X()), F(X(t)) and B in (12) have the block form grid technique, and then compute the gPC coefficient by

Qi (X)) By ,
Q ()?(t)) = : , B=| : () = <f(t, 5)7Hj(f)> ~ Y whH(EME ). (31)
- k=1
L @x (X(t)) B (28) 2) ST versus SCLike MC, SC is a sampling-based sim-
F ()?(t)) ulator. Therefore, the cost of SC has a linear dependence
F()?(t)) - ) on N,, the number of samples. However, SC uses more
- : ’ sampling nodes than ST (c.f. Section V-F). Furthermore,
Fy (X(t)) SC is not as efficient as ST in time-domain simulation. To
] - ) reconstruct the gPC coefficients of time-domain soluti@t,
with the n;-th block defined by must use the same time grid for simulating all deterministic
O, ()z (t)) _ <(f 2(6,6),€), Hn (), DAEs. Since iF is difficult. to .preselect an adaptive.time
. ~ oK X grid, a small fixed step size is normally used, leading to
F, (X (t)) = <f #(t,€),€), Hny () ), (29) excessive computational cost. In contrast, ST can use any
B, = < B, H,, (g)> _ standard adaptive step stepping to accelerate the tima&idom

simulation since it directly computes the gPC coefficieltts.

To obtain the above inner product, one can use numerica@lems that SC can use adaptive time stepping to simulate
guadrature or Monte Carlo integration [48]. each deterministic DAE, and then uses interpolation at the
2) ST versus SGBoth of them are intrusive solvers, andime points where solutions are missing. Unfortunatelyg th
the coupled DAEs from ST and SG have the same dimensi@nrors caused by such interpolations are much larger than

However, SG is much more expensive compared to ST. the threshold inside Newton's iterations, causing inaateur
First, SG must evaluate multivariate stochastic integralsomputation of higher-order gPC coefficients. However, SC

hence functiong’ and f must be evaluated at many quadraturghdeed can use adaptive time stepping if one is not intedeste

or sampling nodes. This step is not cheap because evaluaiinghe statistical information of the time-domain wavefetm

a semiconductor device model (e.g., BISM3 model) at each

node involves running tens of thousands of lines of codes. ~
Second, the linear system solution inside the Newton's o ) )

iteration of SG is much more expensive. Assume that Gaussiafi'9- 2 Shows the classification of different stochastic sty

quadrature is applied to calculate the inner products i, (28/Nich is detailed below.

. Classification and Summary

then the Jacobiaﬂ()?,ﬁ) has the following structure o MC and SC are nonintrusive (or sampling-based) solvers.
N N They both start from the original stochastic equation
Jia (X;i) o Dk (X,i) (1) and compute the deterministic solutions at a set of
j()‘(’j _ : . : (30) sampling points. The main difference of MC and SC
k o ) o ’ lies in how to select the samples. MC draws the samples
Ik (X,i) o IkK (X,i> randomly according t&®DF (¢), whereas SC selects the
N samples by a tensor-product (TP) numerical quadrature
and the submatrix7,,, », (X,ﬁ) € R™*" is calculated by or sparse grid (SP) technique. After repeatedly simulating
B each deterministic equation, MC provides the statistical
i\ _ q y o i & information such as distribution or moments, whereas SC
Tnsnz (X’“) o q;w Hn, (5 )H’“ (5 )J (X’f’g ) ’ reconstructs the gPC coefficients by a post-processing

s , step such as numerical integration.
Here £ is the ¢-th Gaussian guadrature node and the | 5G and ST are intrusive solvers as they both directly

corresponding weight/ (Xi7€q> is calculated according to compute the gPC coefficients by simulating a larger-size
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MC: random samples from PDF — solution at each sample — distribution, moments, etc.
nonintrusive

SC: samples from TP, SP, etc. —> solution at each sample — gPC coefficients
Stochastic solvers
SG: Galerkin testing ~ — directly compute gPC coefficients

intrusive . ) . .
ST: collocation testing — directly compute gPC coefticients

Fig. 2. The classification of MC, SG, SC and ST methods.

TABLE |I < 16?
COMPARISON OF DIFFERENT SPECTRAL METHODS 3.5
3r |
Method Type Decoupled?| Adapt. step size?
SC nonintrusive Vi X 2.5 —Proposed ST ]|
SG !ntrus@ve X VA oL - +-Monte Carlg i
ST intrusive 4 v g
s 1.5- b
Vdd 1 |
Rd 0.5¢ b
Vout o- |
_0‘E 1 1 1 1 L L L
-0.5 0 0.5 1 1.5 2 2.5 3 3.5
+ Vin
Vin
- Rs Fig. 4. Error bars showing the mean and s.t.d values from oumsthod
(blue) and Monte Carlo method (red) BfV4q).
. _ - a) ST method b) Monte Carl
Fig. 3. Schematic of the common-source amplifier. 100 @ 100 (b) Monte Carlo
800 & 800
coupled DAE only once. With gPC approximations, the § g
both start from the residual function (10). SG sets ugeoo M 600
a larger-size coupled deterministic model by Galerki;400 5 00
testing, whereas ST uses a collocation testing techniqi g E
The spectral methods ST, SC and SG are further compa < 20 < 200
in Table Il. ST allows both adaptive time stepping and deco
pled simulation, therefore, it is more efficientover SCa®@ S  §5 9 o5 0 0s X 9 95 0 105
Power x10* Power x10°
V. NUMERICAL RESULTS Fig. 5. Histograms showing the distributions of the powersigiation at

. ) . ] Vin = 1.4V, obtained by ST method (left) and Monte Carlo (right).
This section presents the simulation results of some analog

RF and digital integrated circuits. Our ST algorithm is im-

plemented in a MATLAB prototype simulator and integrategll circuit examples, SC and SG use the samples from a tensor-
with several semiconductor device models for algorithnifiver product rule. The sparse-grid and tensor-product SC msthod
cation. In this work, Level-3 MOSFET model and Ebers-Molare compared with ST in detail in Section V-F.

BJT model are used for transistor evaluation [49]. The TSMC

0.25:m CMOS model card [50] is used to describe the device ) .
parameters of all MOSFETs. SC, SG and Monte Carlo (M@‘ lllustrative Example: Common-Source (CS) Amplifier
methods are implemented for comparison and validation. InThe common-source (CS) amplifier in Fig. 3 is used to
SG and ST, step sizes are selected adaptively according tochmpare comprehensively our ST-based simulator with MC
local truncation error (LTE) [46] for time-domain simulati. and other spectral methods. This amplifier hasandom

In contrast, uniform step sizes are used for both MC and $@rameters: 1)V (threshold voltage wheW,, = 0) has a
since we need to obtain the statistical information of timexormal distribution; 2) temperat€ has a shifted and scaled
domain solutions. In our experiments, all candidate nodes Beta distribution, which influence¥y;,; 3) Rs and R4 have

ST are generated by Gaussian quadrature and tensor-proamma and uniform distributions, respectively.

rules. The cost of generating the candidate nodes andisglect 1) ST versus MC:ST method is first compared with MC
testing nodes is several milliseconds, which is negligiBler in DC sweep. By sweeping the input voltage frénV up to
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107 10 (a) Mean value
-8-ST -=-ST 25 i i T T
—~10°% ®, os6
= = \ --SC ]
: :
= 2"
S S 1
5 ©10°
9] %)
Q o) T
[ 031075
107 10" 5 5 = . 0 0.5 1 15 " 2 ( ) 25 3 3{5 4
2 5 10 10 1 10 ime (s, 7
thtal gPC order (p) CPU time (s) x10
(b) Standard deviation
0.3 T T T T T
Fig. 6. Absolute errors (measured thy norm) of the gPC coefficients for —e

the DC analysis of the CS amplifier, witt,, = 1.6V. Left: absolute errors
versus gPC ordep. Right: absolute errors versus CPU times.

TABLE Il
COMPUTATIONAL COST OF THEDC ANALYSIS FOR CSAMPLIFIER.

gPC order §) 1 2 3 4 5 6
time (s) || 0.16 | 0.22 | 0.29 | 0.51 | 0.78 1.37

ST # nodes 5 15 35 70 126 210

sc |_time (s) [[0.23] 033 1.09 | 2.89 | 6.18 | 11.742 003 o : C— s L = .
# nodes || 16 81 | 256 | 625 [ 1296 | 2401 time (s) «16°

gg | fime(s) [[ 0.25] 0.38 | 533 | 31.7 | 304 | 1283

# nodes|| 16 81 256 | 625 | 1296 | 2401

Fig. 7. Transient waveform of the output of the CS amplifier.

TABLE IV

3 V with a step size 0.2 V, we estimate the supply currents
COMPUTATIONAL COST OF TRANSIENT SIMULATION FORCS AMPLIFIER.

and DC power dissipation. In MCL0° sampling points are

used. In our ST simulator, using an ordetruncated gPC Methods ST | SG SC

expansion (with 35 gPC basis functions, and 35 testing nodes CPUtimes || 41s| >1h | 1180 s

selected from 256 candidate nodes) achieves the same level # nodes 35 | 256 | 256
speedup of ST|| 1 > 88 29

of accuracy. The error bars in Fig. 4 show that the mean
and s.t.d values from both methods are indistinguishable.
The histograms in Fig. 5 plots the distributions of the power _ _ )
dissipation ab;, = 1.4V. Again, the results obtained by ST isWll be discussed in Section V-F.
consistent with MC. The expected valuelatV is 0.928 mw  3) ST versus SC and SG in Transient Simulatiéimally,
from both methods, and the s.t.d. valu@is07 uW from both ST is compared with SG and SC in transient simulation. It is
approaches. Apparently, the variation of power dissipai#o well known that the SG method provides an optimal solution
not a Gaussian distribution due to the presence of circilit terms of accuracy [32]-[34], therefore, the solutionnfro
non"nearity and non-Gaussian random parameters_ SG is used as the reference for accuracy Comparison. The
CPU times: For this DC sweep, MC costs abaits hours, total gPC order is set g8 = 3 (with K" = 35 testing nodes
whereas our ST simulator only cosist seconds. Therefore, Selected from 256 candidate nodes), and the Gear-2 integrat
a 1700x speedup is achieved by using our ST simulator. Scheme [46] is used for all spectral methods. In SC, a uniform
2) ST versus SC and SG in DC Analysi¢ext, ST method Step size oflOus is used, which is the largest step size that
is compared with SG and SC. Specifically, we Bgt= 1.6V does not cause simulation failures. The input is keptias=
and compute the gPC coefficients of all state variables withV for 0.2 ms and then added with a small-signal square
the total gPC ordep increasing front to 6. We use the results Wave (with0.2V amplitude andl kHz frequency) as the AC
from p = 6 as the “exact solution” and plot the, norm of component. The transient waveforms ., are plotted in
the absolute errors of the computed gPC coefficients verdt§. 7. The mean value and standard deviation from ST are
p and CPU times, respectively. The left part of Fig. 6 showamost indistinguishable with those from SG.
that asp increases, ST, SC and SG all converge very fast.Itis interesting that the result from ST is more accurate tha
Although ST has a slightly lower convergence rate, its errghat from SC in this transient simulation example. This is be
still rapidly reduces to below0~* whenp = 3. The right part cause of the employment of LTE-based step size control [46].
of Fig. 6 shows that ST costs the least CPU time to achieve téth a LTE-based time stepping [46], the truncation errors
same level of accuracy with SC and SG, due to the decoupkaiised by numerical integration can be well controlled in ST
Newton’s iterations and fewer nodes used in ST. and SG. In contrast, SC cannot adaptively select the tinge ste
CPU times: The computational costs of different solvers argizes according to LTEs, leading to larger integration rstro
summarized in Table 1ll. The speedup of ST becomes moreCPU times: The computational costs of different solvers
significant as the total gPC ordgrincreases. We remark thatare summarized in Table IV. It is noted that SC uses about
the speedup factor will be smaller if SC uses sparse grids,7as of nodes of ST, but the speedup factor of S2% This
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TABLE V
COMPUTATIONAL COST OF THEDC ANALYSIS FOR LNA.

gPC order %) 1 2 3 4 5 6
ST time (s) || 0.24 | 0.33 | 0.42 | 0.90 | 1.34 | 2.01
# nodes 4 10 20 35 56 84
time (s) || 0.26 | 0.59 | 1.20 | 2.28 | 4.10 | 6.30
# nodes 8 27 64 125 | 216 | 343
time (s) || 0.58 | 2.00 | 6.46 | 249 | 87.2 | 286
# nodes 8 27 64 125 | 216 | 343

SC

SG

T—sT1

Fig. 8. Schematic of the LNA. 18- ° SG
1.7 B
10° 10° ~ 16 4
-8-ST -8-ST 8
-+-SG -+SG W 15
1078 ~=-SC 10" 1.4 \

100

abs. error
3

abs. error
3

. 2 2.
time (s) x10°

10° 10°

10| 10|

10
5 2 -1 L
fotal gPé order (lp) 10 10 CPU ]tm]e (s) 10 w

10

Fig. 9. Absolute errors (measured thy norm) of the gPC coefficients for
the DC analysis of LNA. Left: absolute errors versus gPC ongeRight:
absolute errors versus CPU times.

25

2
time (s)

is because the adaptive time_steppipg .in ST causes an ex{§210. Transient simulation results of the LNA. Upper paxpectation of
speedup factor of abodt MC is prohibitively expensive for the output voltage; bottom part: standard deviation of thgpat voltage.

transient simulation and thus not compared here.

B. Low-Noise Amplifier (LNA) . ' _
Now we consider a practical low-noise amplifier (LNA)be written into the cell and stored on transistofs — M,
. : . /The 1-bit information is represented by the voltage of node
shown in Fig 8. This LNA ha$ random parameters in total: oo )
. ; . . Q. When the write line has a low voltage (logic Q)5 and
resistor R3 is a Gamma-type variableR, has a uniform . : .
S . . o Mg turn off. In this caseM; — M, are disconnected with the
distribution; the gate width ofM; has a uniform distribution. it line. and thev form a latch to store and hold the state of
DC Analysis: We first run DC analysis by ST, SC and SC’lr)mdeQ, HereV, yis set asl V, while the high voltages of the
with p increasing froml to 6, and plot the errors of the gPC . =" ' ”gd e both set 23V 9 9
coefficients of the state vector verspsand CPU times in €a €s are both set asv.
Fig. 9. For this LNA, ST has almost the same accuracy with Now we assume that due to mismatch, the gate widths of
SC and SG, and it requires the smallest amount of CPU timdd; — M, have some variations which can be expressed as
The cost of the DC analysis is summarized in Table V.  Gaussian variables. Here we study the influence of device
Transient Analysis: An input signalV;, = 0.5sin(27 ft) variations on the transient waveforms, which can be further
with f = 10® Hz is added to this LNA. We are interestedised for power and timing analysis. Note that in this paper we
in the uncertainties of the transient waveform at the outpwto not consider the rare failure events of SRAM cells [24]. To
Settingp = 3, our ST method use20 gPC basis functions quantify the uncertainties of the voltage waveform at node
(with 20 testing nodes selected from 64 candidate nodes)@y our ST method withp = 3 and K = 35 (with 35
obtain the waveforms of the firdtcycles. The result from ST testing nodes selected from 256 candidate nodes) is applied
is indistinguishable with that from SG, as shown in Fig. 1(erform transient simulation under a given input wavefarms
ST consumes onl$6 seconds for this LNA. Meanwhile, SGFig. 12 shows the waveforms of write and bit lines and the
costs26 minutes, which i228x slower compared to ST. corresponding uncertainties during the time inteff@all]us.

CPU times: Our ST method cost§ minutes to obtain the
C. 6-T SRAM Cell result. SG generates the same results at the cost of several
The 6-T SRAM cell in Fig. 11 is studied to show thehours. Simulating this circuit with SC or MC is prohibitiyel
application of ST in digital cell analysis. When the writedin expensive, as a very small uniform step size must be used due
has a high voltage (logic 1), the information of the bit lir@c to the presence of sharp state transitions.
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Write line V=20V T

Vdd T
Ma M3
.

Ms \j Q7
] QA
: Q [
’:-“Mz Ml—”:‘ Vas
= Bit line % N
< R1
Fig. 11. Schematic of the CMOS 6-T SRAM. Vss=-20v L
(a) Mean value of V(Q) Fig. 13. Schematic of the BJT feedback amplifier.
1.5 : :
(a) Real part
1+ i 18, T
187 Monte Carld|
0.5 i p—
14k —— ST method ||
0 : : R : 12+
0 0.2 0.4 time (s) 0.6 0.8 1
g 10° (b) Standard deviation of V(Q) x10° 100
6r ] e 1¢° 10° 1 10 10
freq (Hz)
4+ ]
(b) Imag. part
0 T
2r ,
b |
0 L L L —— Monte Carlg
0 0.2 0.4 time (s) 0.6 0.8 1 Sl —— ST method | |
2 (c) Write-line signal x10°
; ‘ al
1.5¢ 8 _al
1, 7 _5 1 1 1 1 1
0l | 107 10’ 102freq (HZ}OA 10° 10°
00 0‘_2 0‘_4 time (s) 0.6 o‘_g 1 Fig. 14. Uncertainties of the transfer function of the BJT &fiep.
5 (d) Bit-line signal x10°
1.5 . from 64 candidate nodes), our ST simulator achieves the
Nl similar level of accuracy of a MC simulation usint)®
samples. The error bars in Fig. 14 show that the results
0.5] 1 from both methods are indistinguishable. In ST, the real and
0 imaginary parts of the transfer functions are both obtained
0 0.2 0.4 time (s) 0.6 08 1 as truncated gPC expansions. Therefore, the signal gain at
x 10

each frequency point can be easily calculated with a simple
Fig. 12. Uncertainties of the SRAM cell. (a) and (b) shows ¢kpectation pOIyn0m|a| _evaluatl_on. Fig. 15 shows the. calculated PDF of
and standard deviation 8fu; (¢) and (d) shows the waveforms of the writethe small-signal gain af = 8697.49 Hz using both ST and
line and bit line, respectively. MC. The PDF curves from both methods are indistinguishable.
CPU times: The simulation time of ST and Monte Carlo

are 3.6 seconds and ovex000 seconds, respectively.
D. BJT Feedback Amplifier P y

To show the application of our ST method in AC analysis _
and in BJT-type circuits, we consider the feedback amplifi§r BJT Double-Balanced Mixer
in Fig. 13. In this circuit, R, and R, have Gamma-type As the final circuit example, we consider the time-domain
uncertainties. The temperature is a Gaussian variablehwhg&mulation of RF circuits excited by multi-rate signals, by
significantly influences the performances of BJTs and diodesudying the double-balanced mixer in Fig. 16. Transistors
Therefore, the transfer function from, to V. is uncertain. Q; and Q. accept an input voltage of frequencf, and
Using p = 3 and K = 20 (with 20 testing nodes selectedQs; ~ Qg accept the second input of frequengty The output
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PDF of gain @ 8697.49 Hz (a) Expectation of }]/ut

14,

© ST method
—— Monte Carlg 0.02)

12

10+

_0.04 . . . . .
15

time (s)

-3 (b) Standard deviation ofe\u/l

9.4 9.45 9.5 9.55 9.6 9.65 9.7 9.78 1 L
Signal gain from Y to V. 0 05 1 time (s) 25 . 10,?
Fig. 15. Simulated probability density functions of the siggain. Fig. 17. Uncertainties oVout=Vout1 — Vous2 Of the double-balanced mixer.
Ved=8V - (a) ST vs SC-TP G (b) ST vs SC-SP
. ——p=1 ——p=1
R1 R2 -e-p=2 -e-p=2
P Vout1 > ngz" —"—P=3 = ——p=3
| - 5 pe| B ~--p=d
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Fig. 18. The speedup factor of ST over SC caused by node isele¢a)
ST versus SC-TP, (b) ST versus SC-SP. This is also the spéactop in DC
analysis.

Fig. 16. Schematic of the BJT double-balanced mixer. ) ) )
nodes in SC-SP is estimated as

P~ M
Vous = Vout1 — Voute Will have components at two frequencies: Nsc-sp = Z 21(1(1_114)-!;). (32)
one at|f; — f»| and the other aff; + f». Now we assume =0
that R; and R, are both GaL_Jss_ian-type random variables, DC Analysis: In DC analysis, since both ST and SC
and we measure the uncertainties of the output voltage. |8e decoupled solvers and their costs linearly depend on the

our simulation, we seViy, = 0.01sin(2rfit) with fi = 4 qymper of nodes, the speedup factor of ST versus SC is
MHz and Vi, = 0.01sin(27 fot) with fo = 100 kHz. We

setp = 3 and K = 10 (with 10 testing nodes selected from vpc ~ Nsc/K (33)

16 cz_indida_lte no<_jes), and then use our ST simulator to 'UWAere Ny and K are the the numbers of nodes used by SC

transient simulation front = 0 to t = 30us. The expectation and ST, respectively. Fig. 18 plots the valuesafo /K for

and standard deviation 641 — Vou2 are plotted in Fig. 17. Sé—TP and SC-SP, which is also the speedup factor of ST
CPU times: The cost of our ST method is 21 minuteSy e Sc in DC analysis. Since ST uses the smallest number of

whereas simulating this mixer by SG, SC or MC on thg,qes it is more efficient over SC-TP and SC-SP. When low-

same MATLAB platform is prohibitively expensive due to theorder gPC expansions are used< 3), the speedup factor

presence of multi-rate signals and the large problem size. over SC-SP is below0. The speedup factor can be abae

if p > 4, and it gets larger ag increases. In high-dimensional

cases [ > 1), the speedup factor of ST over SC-SP only

depends omp. It is the similar case if Smolyak sparse grids
Finally we comprehensively compare the costs of ST arde used in SC [31]. For example, compared with the sparse-

SC. Two kinds of SC methods are considered accordiggid SC in [31], our ST has a speedup factor26fif [ >> 1.

to the sampling nodes used in the solvers [39]: SC usingTransient Simulation: The speedup factor of ST over SC

tensor product (denoted as SC-TP) and SC using sparse giidg transient simulation can be estimated as

(denoted as SC-SP). SC-TP uggs- 1)! nodes to reconstruct N .

the gPC coefficients, and the Wf)l’k in [38] belongs to thisclas Vrrans ~ (Nso/ K) x &, with k> 1, (34)

For SC-SP, a level-+ 1 sparse grid must be used to obtain thehich is larger than/pc. The first part is the same as in DC

p-th-order gPC coefficients in (31). We use thedrajested analysis. The second pattrepresents the speedup caused by

sparse grid in [42], and according to [51] the total number afdaptive time stepping in our intrusive ST simulator, whigh

F. Discussion: Speedup Factor of ST over SC
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case dependent. For weakly nonlinear analog circuits, (g. [13]
SC amplifier in Section V-A)x can be belowl0. For digital
cells (e.g., the SRAM cell in Section V-C) and multi-rate RIfM]
circuits (e.g., the double-balanced mixer in Section VE&J.-
based transient simulation can be prohibitively expendive
to the inefficiency of using a small uniform time step size. 1HS!
this cases can be significantly large.

VI. CONCLUSION

[16]

This paper has proposed an intrusive-type stochastic rsolv[(la7]
named stochastic testing (ST), to quantify the uncertsnin
transistor-level circuit analysis. With gPC expansions,ca&n
handle both Gaussian and non-Gaussian variations. Cothpare
with SG and SC, ST can simultaneously allow decoupled nu-
merical simulation and adaptive step size control. In adoadlit
multivariate integral calculation is avoided in ST. Suclpr [19]

erties make ST method hundreds to thousands of times faster

18]

over Monte Carlo, and tens to hundreds of times faster than

SG. The speedup of ST over SC is caused by two factors: 1p

smaller number of nodes required in ST; and 2) adaptive time
stepping in the intrusive ST simulator. The overall speed

]

ulations (e.g., DC, AC and transient analysis) are perfdrme
on some analog, digital and RF circuits, demonstrating tif&
effectiveness of our proposed algorithm.
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