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Abstract—Stochastic spectral methods are efficient techniques
for uncertainty quantification. Recently they have shown excelleh
performance in the statistical analysis of integrated circuits. In
stochastic spectral methods, one needs to determine a set of
orthonormal polynomials and a proper numerical quadrature
rule. The former are used as the basis functions in a generalized

i ) . ~’surrogate., e 3 y
polynomial chaos expansion. The latter is used to compute the et ~surrogaté. gelironate
integrals involved in stochastic spectral methods. Obtaining such R U model & '--.4,,_0(_’?.'.-"
information requires knowing the density function of the random gl e 5 5
input a-priori. However, individual system components are _often lower-level lower-levs] lower-level
described by surrogate models rather than density functions. parameters parameters parameters

In order to apply stochastic spectral methods in hierarchical

uncertainty quantification, we first propose to construct physi-

cally consistent closed-form density functions by two monotone Fig. 1. Demonstration of hierarchical uncertainty quardtiion.
interpolation schemes. Then, by exploiting the special forms of

the obtained density functions, we determine the generalized

polynomial-chaos basis functions and the Gauss quadrature  Thjs work is motivated by the need for hierarchical un-
rules that are required by a stochastic spectral simulator. The = oo qint quantification based on stochastic spectral oaisth
effectiveness of our proposed algorithm is verified by both . . - o
synthetic and practical circuit examples. Consider Fig. 1 that demonstrates the uncertainty quaantific
tion of a complex system. In this system, there existadily

Index Terms—Uncertainty quantification, stochastic circuit obtained surrogate models:

simulation, density estimation, generalized polynomial chaos,
Gauss quadrature, surrogate model. N = 1 2 o
q 9 xZ:fl(§Z)7 WlthgiERdla Zzla"' ,q (1)

where z; is a variable dependent on multiple lower-level
random parameters. In transistor-level simulatian, is a

UE to significant manufacturing process variation, i#evice-level parameter (e.g., threshold voltage of a tséoy

has become necessary to develop efficient uncertaifffluenced by some geometric and process variations. In a
quantification tools for the fast statistical analysis @fottonic statistical behavior-level simulator [8];; is the performance
circuits and systems [1]-[18]. Monte Carlo simulators [8]- Metric of a small circuit block (e.g., the frequency of a agk-
have been utilized in statistical circuit analysis for dées controlled oscillator) affected by some device-level para
Recently, stochastic spectral methods [19]-[24] have getkr etersé;. Typical surrogate models include linear (quadratic)
as a promising technique for the uncertainty quantificatidg@sponse surface models [8], [28]-[32], truncated gerzexal
of integrated circuits [1]—[5]. Such methods approximdte t Polynomial chaos representations [1], [2], smooth or non-
stochastic solution by a truncated generalized polynomignooth functions, stochastic reduced-order models [14], [
chaos expansion [25]-[27], which converges much faster thE33], and some numerical packages that can rapidly evaluate

Monte Carlo when the parameter dimensionality is not highfi(&:) (€.9., computer codes that implement a compact statis-
tical device model). By solving a system-level equatiorg th
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utilized to perform the higher-level simulation. density function generated by kernel density estimation is
When:;’s are mutually independent, it is possible to furthenon-negative, and the resulting cumulative density famcti
speed up the hierarchical uncertainty quantification flow by bounded in[0,1]. However, kernel density estimation is
using stochastic spectral methods [1]-[5], [19]-[24]. hist seldom used in circuit modeling due to several shortcomings
case, high-accuracy results may be obtained by fast siiomlatFirst, the approximated probability density function ist no
if 7 smoothly depends of;’s (even if f;(¢;) is non-smooth). compact: one has to store all samples as the parameters of a
In order to apply available stochastic spectral methods, wensity function, which is inefficient for reuse in a stodi@as
need to determine a set of orthonormal polynomials as thenulator. Second, it is not straightforward to generategas
basis functions for generalized polynomial chaos expassiofrom the approximated probability density function. Third
Sometimes we also need a proper numerical quadrature rifle accuracy of kernel density estimation highly depends on
(such as Monte Carlo, Gauss quadrature, etc.) [3]. In thize specific forms of the kernel functions (although Gaussia
paper, we will consider Gauss quadrature since it is widekgrnel seems suitable for the examples used in this work) as
used in stochastic spectral methods. Both tasks require thell as some parameters (e.g., the smoothing parametés). Th
probability density function of each random inpyt Existing paper will not construct the closed-form probability déysi
techniques typically assume that the random inputs have sofunction by kernel density estimation, instead we will uke t
well-known distributions (e.g., Gaussian, uniform, Gammaumericalresults from kernel density estimation as a reference
and Beta distributions), and make use of available quadratdior accuracy comparison.
rules and orthogonal polynomials (e.g., Hermite, Legendre Asymptotic Probability Extractionf x is a linear quadratic
Laguerre and Jacobi polynomials) [1]-[5], [20]-[27]. Thidunction of some lower-level Gaussian parameérasymp-
assumption obviously does not hold in our case: the proibabiltotic probability extraction [29], [30] can efficiently apxi-
density function ofz; is not readily available from its surrogatematep(z) by moment matching. It has become the mainstream
model. algorithm used in statistical circuit yield analysis andimjiza-
Therefore, a question is how to determine the generalizédn. Asymptotic probability extraction and its variant1]3
polynomial-chaos basis functions and Gauss quadratues ruteat p(z) as the impulse response of a linear time-invariant
from a general surrogate model. This paper aims to par8ystem, then approximategx) using asymptotic waveform
answer this key question in hierarchical uncertainty quagvaluation [41]. Several shortcomings have limited theliapp
tification. Our method is based on the ideas of changimgtion of asymptotic probability extraction and its vat&n
variables and monotone interpolation [34]-[37]. Spediffifra 1) Some assumptions of asymptotic probability extraction
we represent the random input as a linear function of a nemay not hold: i)f are assumed Gaussian variables, whereas
parameter, and treat such parameter as a new random inputeality E can be non-Gaussian; i) may not be a linear
Using two monotone interpolation schemes, physically mensquadratic function of; iii) the statistical moments of may
tent closed-form cumulative density functions and prolitghi be unbounded, and thus asymptotic waveform evaluation [41]
density functions can be constructed for the new randontinpaannot be applied.
Due to the special forms of the obtained density functiores, w 2) The density functions from moment matching may be
can easily determine a proper Gauss quadrature rule and phegsically inconsistent. The cumulative density functioay
basis functions for a generalized polynomial chaos expansihave oscillations and the probability density function niay
We focus on the general framework and verify our methatkgative, as shown by [29], [30] and the recent work [42], as
by using both synthetic and performance-level circuit@gate well as by our experiments in Section VI-D. This is because
models. Our method can be employed to handle a wide varigitye impulse response of a linear system is not guaranteed
of surrogate models, including device-level models forC3RI non-negative when generated by asymptotic waveform eval-
level simulators [1]-[3], circuit-level performance mdsléor uation [41]. Negative probability density functions cahihe
behavior-level simulation [8], as well as gate-level stital used for the stochastic simulation of a physical model.
models for the timing analysis of digital VLSI [16]-[18]. In  3) The resulting density function may blow up, as shown
this paper we will focus only on the derivation of the basit Section VI-D and in [42]. There are two reasons for
functions and Gauss quadrature rules and refer the reathett. First, inaccurate moment computation can causeipmsit
interested to the extensive literature on how to use themgoles for a linear system, leading to an unbounded time-
a stochastic spectral simulator (see [1]-[5], [20]-[27§l&he domain response. Second, asymptotic waveform evaluation i

references therein). numerically unstable, which is well known in interconnect
macromodeling. This is one of the important reasons why the
Il. RELATED WORK AND BACKGROUND REVIEW model order reduction community has switched to implicit

. N hi Krylov- jection.
A. Related Work on Density Estimation moment matching by Krylov-subspace projection

Let x be a random variable, both kernel density estima- ) ] ) )
tion [38]-[40] and asymptotic probability extraction [2930] B. Generalized Polynomial-Chaos Basis Function and Gauss
aim to approximate its probability density functipiiz). Quadrature

Kernel Density Estimationwith N samples forz, ker- In order to apply stochastic spectral methods, one normally
nel density estimation approximates its probability dgnsineeds a set of generalized polynomial-chaos basis fursction
function by using a set of kernel functions. The probabilityo approximate the stochastic solution of a physical model.
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Very often, a proper quadrature rule such as Gauss qua€ratu
method [43] is also required to set up a deterministic equati
in intrusive solvers such as stochastic Galerkin [4], [58 an

stochastic testing [1]-[3], or to recover the coefficierfteach Gauss quadrature
basis function for the solution in non-intrusive (i.e., saimg- models

based) solvers such as stochastic collocation [20]-[23].

Basis Function ConstructionGiven p(x) (the probability
density function ofr), the generalized polynomial-chaos basis I_ — — — — random

functions ofz are a set of orthonormal polynomials %, samples
[ o@ss@ptoris =5, @
R Fig. 2.  Construct generalized polynomial-chaos (gPC) bases Gauss

. . . . uadrature rules from surrogate models. Here CDF and PDF nifeamsi-
where integers and j denote the polynomial degrees, anéhtve density function” and “probability density functity respectively.

d;; is a Delta function. In order to obtain;(x)’s, a set of

orthogonal polynomialsr;(x)'s are first constructed via the

well-known three-term recurrence relation [44]: such integrals are not accurately computed, the consttete
sis functions can be erroneous. Furthermeré&s may become
negative, making computing the Gauss-quadrature poirds an
weights impossible.

mir1(x) = (& — ) mi(x) — kimi—1 (), =0, 1,---
7T_+1(I) =0, m(x) =1, 3)

where

Jomi(@)p(x)de S 7l (@)p(x)de [1l. THE PROPOSEDFRAMEWORK

r}/i:‘iaﬁil:]{ia 220,1, . . . .
J i @)p(@)dz " S mi@p(@)de In this paperz;’s in Fig. 1 are assumed mutually indepen-

(4)  dent. With this assumption, we can consider each surrogate

andlﬁ]o =1 Hereﬂ'i(ﬂf) is a degree'-polynomial with Ieading model independen“y' For SlmphC'ty’ let
coefficient 1. After that, the firsk + 1 basis functions are

obtained by normalization: &= f(€), with £ € R (8)
N mi(x) . . represent a general surrogate model. We employ the linear
dilx) = N fori=0,1,--- . ) transformation K
r—a
The obtained univariate basis functions can be easily detn =" 9)

to the multivariate cases, as detailed in Section II-A of [3]
Gauss-Quadrature Rul&Vhen computing an integral with
Gauss quadrature [43] one typically uses the expression

to define a new random input, which aims to improve the
numerical stability. Once we obtain the cumulative density
function and probability density function af(denoted ap(x)

Atl o and p(z), respectively), then the cumulative density function
/g(fv)ﬂ(ﬂi)dﬂc ~ Y gl (6) and probability density function of can be obtained by
R J=l1 .
A Tr—a R 1 2—a
which provides an exact result if () is a polynomial of p(2) :p( b ) and p(2) = gf’( b ) (10

degree< 27+ 1. The quadrature pointg’’s and weightsw’s

depend orp (z). Define a symmetric tridiagonal matrix respectively. _ _ _
) As shown in Fig. 2, we first construct the density functions
[ v VAL of = in a proper way then we determine the generalized
VR m polynomial-chaos bases aof and a proper Gauss quadrature
rule based on the obtained density functions. With the obthi
J= ) (") cumulative density function, random samplesaotould be
easily obtained for higher-level Monte Carlo-based sirioitg
Va1 VRa however such task is not the focus of this paper. Our proposed
- VEa v framework consists of the following steps.
and let its eigenvalue decomposition be- USUT, whereU o Step 1.Use N Monte Carlo samples (or readily available
is a unitary matrix. Denote thg, j) entry of U by u, ;, then measurement/simulation data) to obtain the discrete cu-

— —

27 is the j-th diagonal element oE, and the corresponding mulative density function curve af = f(¢). Since f(¢)
weight w’ is u%,j [43]. Using tensor product or sparse grids, is a surrogate model, this step can be extremely efficient.
1-D Gauss quadrature rules can be easily extended to multi= Step 2.Let 6 > 0 be a small threshold valuei,;,
dimensional cases [20]-[23]. and &, be the minimum and maximum values of
Remark 2.1:The main bottleneck of the above procedures & from the Monte Carlo analysis (or available data),
lies in (4), which requires computing a set of integrals.sThi respectively. We set==2,in — §, b=Zmax + d — a, then
step can be non-trivial ib(x) is not in a proper form. When N samples ofc in the interval(0, 1) are obtained by the



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITSND SYSTEMS, VOL. XX, NO. XX, XX 2014 4

linear transformation (9). The obtained samples provide The most important parts of our algorithm are Step 4 and

a discrete cumulative density function for Step 6. In Section IV we will show how we guarantee that
o Step 3.From the obtained cumulative density functiorihe obtained density functions are physically consist8tep
curve ofz, pick n < N points(z;,y;) fori=1,--- ,n. 6 will be detailed in Section V, with emphasis on an efficient

Herez; denotes the value af, andy; the corresponding analytical implementation.
cumulative density function value. The data are mono-
tone:z; < x4 and0 = 1 <<y, =1

o Step 4.Use a monotone interpolation algorithm in Sec-
tion IV to construct a closed-form functiop(z) to This section presents the numerical implementation of our

IV. IMPLEMENTATION OF THE DENSITY ESTIMATOR

approximate the cumulative density functionaaf proposed density estimation. Our implementation is based o
« Step 5.Compute the first-order derivative @fiz) and two monotone interpolation techniques, which are well istdd
use it as a closed-form approximation 4@r). in the mathematical community but have not been applied to

o Step 6. With the obtainedp(z), we utilize the pro- uncertainty quantification. Since we approximate the camul
cedures in Section V to construct the generalizdive density functionp(z) in the intervalz € [z, x,], in both
polynomial-chaos basis functions and Gauss quadratumethods we seb(z)=y;=0 for x < z; andp(z)=y,=1 for
points/weights forz. x > x,, respectively.

Many surrogate models are described by truncated gener-
alized polynomial phaos expansions. The cost of evaluatlﬁg Method 1: Piecewise Cubic Interpolation
such models may increase dramatically when the lower-level o . _ _ o
parameterst have a high dimensionality (which may occa- Qur first |mpIem§ntat|on uses a piecewise cubic interpo-
sionally happen), although the surrogate model evaluationlation [34], [35]. With the monotone data from Step 3 of
still much faster than the detailed simulation. Fortunatai ~Section Ill, we construcp(z) as a cubic polynomial:
practical high-dimensional stochastic problems, norynaily o1, 2 S N2 A 3
a small number of parameters are important to the output arff®) = ek +lr = an) e — )" + ez — )" (13)
most cross terms will vanish [45]-[47]. Consequently, &g for , < [, Ths1], 0 < k < m. If ye=ypi1, We simply

sparse generalized polynomial chaos expansion can bmdti|isetc,1€:yk andc2=c3=ct= 0. Otherwise, the coefficients are
for fast evaluation. Furthermore, when the coupling betwegg|ected according to the following formula [35]

the random parameters are weak, quasi-Monte Carlo [48] can

further speed up the surrogate model evaluation. k= Uk, .Ci = Uks . ) (14)
In Step 3, we first seledtzy,y1) = (0,0) and (z,,,,) = = W, ch = 28’“(2“;7:;{7”“

(1,1). Then data points are selected such that
1 1 where Azy=xp 1 —Tk, sk:% This formula ensures
|xip1 — 2] < — and |yi1 — vl < —, (11) thatp(z) andp’(z) are continuousp(zy) = yx andp’(zx) =
m m yx. Herep/(z) denotes the 1st-order derivative wofz).
where m is an integer used to control. This constraint  The key of this implementation is how to compute such
ensures that the interpolation points are selected pipadh  that the interpolation is accurate ap@r) is non-decreasing.
that the behavior around the peak gffr) is well captured. The value ofy; is decided by two steps. First, we compute

In practical implementation, fok = 2,--- ,n — 1, the point the first-order derivativej(x;,) by a parabolic method:
(zk, yr) is selected from the cumulative density function curve

. . . . 2A A —s2A .
subject to the following criteria: 51 xlj3_””;1) 22201 ifk=1
y(rk) — Sn,—l(2Al‘n*1:A;T;,7_23—87L,2Aﬂ:n,17 lf k —n

1
2
\/(yk_l —yr)? + (o1 —p)” = o (12) suATk_1+sp_1ATk if2<k<n—1.

Tht1—Th—1 ’
. _ i i (15)
For o ¢ [x1,2,], we setp(x)=0. This treatment mtroducgs This parabolic method has2ad-order accuracy [35]. Second,

some errors in the tail regions. Approximating the tail oegi i is obtained by perturbing(zy) (if necessary) to enforce the

is non-trivial, but such errors may be ignored if rare fae'elurm notonicity ofp(x). The monotonicity ofs(z) is equivalent
events are not a major concern (e.g., in the yield analysis 'O Y OIp(L). y oblx q

some analog/RF circuits). to p’(z)_z 0, whic_h is a2r_1d-orqler inequality. By_ solving this
Remark 3.1:Similar to standard stochastic spectral Simmequahty, a fga3|ble region faj, denptgd byA, is provided

ulators [1]-[5], [20]-[27], this paper assumes thigts are '.n [.3;4].' Occasi)tn?lly we tneed o prOJeit}h(a;k)_ontloAto_gett.

mutually independent. It is more difficult to handle corteth Yk 'hy(gx’“) ¢ A dn bpra;: |c.e, we use the simpler projection

and non-Gaussian random inputs. Not only is it difficultcnet od suggested by [35]:

to construct the density functions, but also it is hard to min (max(o’y(xk)),gslr;m)?

construct the basis functions even if the multivariate dgns Y% = { 0, if spsp_1 =0

function is given [19], [49]. How to handle correlated non- (16)

Gaussian random inputs remains an open and important togith so=s1, s,=s,-1 and sﬁlin:min(sk,sk_l). The above

in uncertainty quantification [19]. Some of our progresshis t procedure projectg(z;) onto a subset of4, and thus the

direction will be reported in [50]. monotonicity ofp(z) is guaranteed.

if spsg—1 >0
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Algorithm 1 piecewise cubic density estimation Algorithm 2 piecewise rational quadratic density estimation
1: Evaluate the model (8) to obtaiN samples ofz; . Evaluate the model (8) to obtaiN samples ofz;

[En

2: Shift and scalet to obtain N samples forz; 2: Shift and scale: to obtain N samples forz;

3: Pick n data points(zy, yx), under constraint (11); 3: Pick n data points(zy, yx), under constraint (11);

4: Calculatey(xy) using the parabolic method (15); 4. for k=1,--- ,ndo

5. for k=1,--- ,ndo 5. Calculatey, using the formula in (20);

6: If yp = yrr1, Setc,lc:yk and ci:c‘z:ciz 0; 6: if yp = Ypt1

7. else 7. seta; =y, Bi = 1 and other coefficients to zero;
8: Computey, according to (16); 8 else

9:  Compute the coefficients in (14). 9:  compute the coefficients df (x) andD(z) using (19).
10: end 10: end

11: end for 11: end for

Oncep(z) is constructed, the probability density functiorfor x € [z, zj11].
of  can be obtained by Note that in piecewise cubic interpolation, a projection
rocedure is not required, since the monotonicit is
pla) = p'(@) = & + 26 (x —ap) + 3ch(@ —z)”  (17) gutomatically guara(rqneed. The pseudo codes ofyligs) density
for < < z441. Note that forz ¢ [z1,x,], p'(z) = 0. estimation method are provided in Algorithm 2.
Calculating p’(x) may amplify the interpolation errors.
However, the error is acceptable since the construpted c

is smooth enough angl(z) is continuous. The pseudo codes _ ) )
of Algorithm 1 summarize the steps of this approach. It is straightforward to show that the obtained density func
tions are physically consistent: p(x) is differentiable, and

B. Method 2: Pi ise Rational dratic | lati thus its derivative’ (x) always exists; 2p(x) is monotonically
- Method 2: Piecewise Rational Quadratic Interpolation increasing from0 to 1, and the probability density function

Our second implementation is based on a piecewise ratiop@&) is non-negative.
quadratic interpolation [36], [37]. In this implementatiove ~ We can easily draw a random sample from the obtained

. Properties ofp(x)

approximate the cumulative density functionzoby p(z). Lety € [0,1] be a sample from a uniform distribution,
N(z) ol +a2z+ ada? then a sample of: can be obtained by solving(z) = y
p(z) = s ; (18) in the intervaly € [yx,yrr1]. This procedure only requires

- 1 2 3.2

D) S+ i + B computing the roots of a cubic (or quadratic) polynomials,
for = € [zg,2141]. The coefficients are selected by theesulting in a unique solution € [z, z)41]. This property
following method: whene), = 241, We setag, =y, 85 =1 is very useful in uncertainty quantification. Not only are
and all other coefficients to zero; otherwise, the coeffisienrandom samples used in Monte Carlo simulators, but also
are decided according to the formula they can be used in stochastic spectral methods. Recently,
compressed sensing has been applied to high-dimensional
stochastic problems [45]-[47]. In compressed sensingiaimn
samples are normally used to enhance the restricted ispmetr
Bl = 22— vpanrps + xiﬂ, (19) property of_ the dictionary matrix [51]. _ _

2 _ _ _ 3 _o9_ Finally, it becomes easy to determine the generalized
B = vk(Tk + Tpr1) — 22k — 2Tp 11, B =2 — g, . ; .
with wy — ISR S 7S THR R v = rFine polynomial-chaos baS|s' functions and a proper quadr.aullee r

Sk Sk for = due to the special form op(x). This issue will be

where s, is defined the same as in piecewise cubic irdiscussed in Section V.
terpolation. In this interpolation scheme, the sufficienda Remark 4.1:0ur proposed density estimator only requires
necessary condition for the monotonicity ofx) is very some interpolation points from a discrete cumulative den-
simple:y, > 0. In order to satisfy this requirement, the slopgity function curve. The interpolation points actually da@

1 2 2

ag = Y12y — WpTrTr+1 + YkThiq,

ay = wr(Tr + Try1) — 2Up11%% — 2YkTho1,
3 _

Oy = Yk+1 — Wk + Yk,

Uk 1S approximated by the geometric mean obtained by any appropriate approach. For example, kernel
o @1-wp density estimation will be a good choice if we know a proper
(s1)7772 (s31)7s7=, if k=1 kernel function and a good smoothing parameter based on
G =14 (syo1)Toi Pt (spp_a) i T, ifk—n  a-priori knowledge. When the surrogate model is a linear
Thy1—Tk Tp—Tk_1 guadratic function of Gaussian variables, we may first egnplo

($p_1) Pt a1 ()Pt if 1< k< n
, (20)
with s, x, = 2222 Similarly, the probability density

— T

asymptotic probability extraction [29] to generate a pbaby
inconsistent cumulative density function. After that, som
. xkb Thy . monotone data points (with;’s bounded by0 and 1) can be
function of z can be approximated by selected to generate a piecewise cubic or piecewise rationa
, N'(z)D(z) — D'(z)N(x) quadratic cumulative density function. The new cumulative
pla) =p'(x) = D2(z) » @1 gensity function and probability density function become
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physically consistent and can be reused in a stochastic-sindu ConstructF; (=) using the Density Function from Alg. 2

lator. If p(z) is constructed by Alg. 2, for any € [x;,x,1] we
rewrite ¥ p(z) as follows

a*[N'(z) D(z)—D'(z)N(x)]

V. DETERMINE BASIS FUNCTIONS AND GAUSS
QUADRATURE RULES k

. . ztp(z) = D2(2)
This section shows how to calculate the general- 4 (2FN() Kzt~ N (z)
ized polynomial-chaos bases and the Gauss quadrature _E( D(x) )_ D(z)
points/weights ofr based on the obtained density function. Therefore.F: (z) can be selected as
A. Proposed Implementation 2*N(z) - Lo d o ka*~IN(x
P P . . _ Fik(z) = A—Fyyk(ﬁv), with ——Fj i (2) = ke Niz)
One of the many usages of our density estimator is to D(z) dx D(z)

fast compute a set of generalized polynomial-chaos basi§y, order to obtamF »(z), we perform a long division:
functions and Gauss quadrature pomts/welghts by analiytic

k=1pn1 B D .
computing the integrals in (4). Let?(z) = Z 7;.xx", then kxD(x)(x) = Pjp(x) + Rgzg) (26)
we have N - i )
whereP; . (z) and i () are both polynomial functions, and
f:mr x)dr = Z Ti ke Mp41, R, () has a lower degree thaD(z). Consequently,
f?r e & (22) ij,f(f;) = Fly(2) + Fy () ~ (27)
k=0 where F}, (x) and F?, (z) are the integrals of’; () and

Where_z_Mk denotes_ thek-th statistical _moments_ofz:. By M(T), respectively. It is trivial to obtainf?,(z) since
exploiting the special form of our obtained density funatio () I

o P; () is a polynomial function.
the statistical moments can be computed as 3k \T . . .
. P The closed form ofF2 x(x) is decided according to the

X s i — coefficients of D(x) and R] x(z), as is summarized below.
My, = / ap()de = /x plede =3 Lix  (23)  case 1if 3% # 0, thenR; i () = 79, +7} ,x. Let us define
— kTG

—o0 1 = A; := 4B} 3% — B2, then we can seledt?, (x) according to
where; ;, denotes the integral in thgth piece: the formula in (28).
@11 Case 2:if 82 = 0 and 82 # 0, thenR;x(x) = 7, is a
constant. In this case, we select
Ijx / p(x)de = Fjp(ji1) — Fjr(z)). (24) ] ~0
v F(w) = 25 n |B2o + 8. (29)
Here F} ;(x) is a continuous analytical function under the 5

constraint%ijk(x) = z*p(z) for z € [x;,2,41]. The key Case 3if 83 = 2 = 0, thenR; () = 0. In this case we
problem of our method is to construét; ,(x). When p(z) set 2, (1) = 6 ! ’

ISI obt(;:uped fr?lr?n Alg. 1 or 'ﬁ% 2 IWt? can deas'g obtalnvtge Remark 5.2:0Occasionally, the projection procedure (16)
CO(;ISES Tm ?/Cj)k( z), as will be elaborated in Section in Alg. 1 may cause extra errors at the end points of some
and section v-t.. intervals. If this problem happens we recommend to use Alg.

th Remark 5.1:This papt)er dm;ctly prlles (4)t tg t():om4p4ut . On the other hand, if high-order basis functions is resguir
e recurrence parameters and r;. As suggested by [44], e recommend Alg. 1, since the moment computation with

modified Chebyshev algorithm [52] can improve the numencﬁe density from Alg. 2 is numerically less stable (due to the

stability when constructing high-order polynomials. Mibe
Chebyshev algorithm indirectly computes and «; by first long-term division and the operations in (28).

evaluating a set of modified moments. Again, if we employ the
p(z) obtained from our proposed density estimators, then the
calculation of modified moments can also be done analyjicall This section presents the numerical results on a synthetic
to further improve the accuracy and numerical stability. ~ €xample and the statistical surrogate models from two joact
analog/RF circuits. The surrogate models of these prdctica
B. ConstructF} (z) using the Density Function from Alg. 1circuits are extracted from transistor-level simulatiosing
Whenp(z) is constructed by Alg. 13* p(z) is a polynomial the fast stochastic circuit simulator developed in [1]-[&ll

function of at most degre-+ 2 inside the intervalz;, z;1]. experiments are run in Matlab ona2.4GHz 4-GB RAM Iaptop.
Therefore, the analytical form o , (z) is In the following experiments, we use the density functions

fis fio . from kernel density estimation as the “reference solution”
Fir(@) = ;2™ + Dj ™" 4 Cj (25) pecause: 1) as a standard technique, kernel density eistimat

VI. NUMERICAL EXAMPLES

with ‘ is most widely used in mathematics and engineering; 2) kerne
aj = 3 b= 2} —6cjz; density estimation guarantees that the generated prdlpabil
’ f?.—t%c?gpjjrgc?m? e density function is non-negative, whereas asymptotic g@rob

Cik = =~ %11 : bility extraction cannot; 3) Gaussian kernel function seem
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~1 3 2
Tk In |B3x% + B2z + B} + Mamtan 2By g A;>0

267 B2/D, A
szk(:v) = 2;3 In ’6;’362 + Brx + ﬁj| - % arctan lj}ﬁf it A; <0 (28)
’ J B —-A; 7
’Fjl',kl 3.2 2 1 28370 =BTk A —
353 n|[3j9: +ﬂjx+ﬂj| B 2aTatsl) iftA; =0
be a good choice for the examples in this paper. However, i @ ®)
is worth noting that the density functions from kernel dénsi ! original CDF ! original CDF
estimation are not efficient for reuse in higher-level sastit 08 o (@) by Alg. 1 08 o (@) by Alg. 2
simulation. We plot the density functions aéf (the original 08 08
random input) instead of (the new random input after a
linear transformation) since the original one is physicaiore 04 04
intuitive. To verify the accuracy of the computed generdiz 02 02
polynomial-chaos bases and Gauss quadrature pointshsgigh
we define a symmetric matré;,; € R(+TD* (41 the(j, 5) 200 2 ;o 0 e %00 0 40 e w0
entry of which is N © 02 @
—PDF via KDE —PDF via KDE
At1 « p(2) by Alg. 1 « p(2) by Alg. 2
v = Z w @ 1 ¢J ) ( ) 0.15 0.15
0.1 0.1
Here z¥ and andw” are the computed-th Gauss quadra-
ture point and weight, respectively. Thereforg; approxi- 0.0§ 0.0§
mates the inner product af;_1(z) and ¢;_1(z), defined as
fqﬁz 1(2) ¢j—1 (z) p(z)dz, by 7 + 1 quadrature points. Let R L S0 0 2w @ e

n+1 be an identity matrix, then we define an error:
Fig. 3. Cumulative density function (CDF) and probabilityndigy function
€ = |||ﬁ+1 — Vﬁ_‘_1||OC (30) (PDF) approximation of for the synthetic example. The reference PDF is
generated by kernel density estimation (KDE).

which is close to zero when our constructed basis functions

and Gauss-quadrature points/weights are accurate enough.
algorithms are compared with the original cumulative dgnsi

function and probability density function in Fig. 3. Clearl
p(z) is indistinguishable with the original cumulative density
Asademonstrat|0n we first ConS|der the fO”OW|ng Synthetfuncnon (from Monte Car'o S|mu|at|on) anﬁ( ) over|aps
example with four random parametefs= &1, -+ , &: with the original probability density function (estimatéxy
. f(~) — &1 + 0.5 exp(0.526) kr(]arnel dlensfity eitimatli%n us_ing G.auss_ian kernels).ﬁ_mee th
+0.34/2.1 x |&4] + sin (&3) cos (3.91&4) the results from kernel density estimation are not efficfent
reuse in higher-level stochastic simulation, since all kon
where &, & and &s are all standard Gaussian random varicarlo samples are used as parameters of the resulting ylensit
ables, and¢, has a uniform distribution in the intervalfunction.
[-0.5,0.5]. This model is strongly nonlinear with respect to It is clearly shown that the generatg@) [and thusp(x)]
€ due to the exponential, triangular and square root funstioris monotonically increasing fromito 1, and that the generated
It is also non-smooth a¢4 = 0 due to the third term in the (&) [and thusp(x)] is non-negative. Therefore, the obtained
model. This model is designed to challenge our algorithrdensity functions are physically consistent.
Using this surrogate model)® samples of: are easily created Basis Function:Using the obtained density functions and
to generate the cumulative density function curve within the proposed implementation in Section V, a set of orthonor-
second. mal polynomialspy (z)’s are constructed as the basis functions
Density Estimation:we setm = 45 and selectr4 data at the cost of milliseconds. Fig. 4 show the first five general-
points from the obtained cumulative density function curvieed polynomial-chaos basis functions. Note that althotigh
using the constraint in (12). After that, both Alg. 1 and Alg. computed basis functions from two methods are graphically
are applied to generajéz) andp(z) as approximations to the indistinguishable, they are actually slightly differemce Alg.
cumulative density function and probability density fuootof 1 and Alg. 2 generate different representationsir).
x, respectively. The CPU times cost by our proposed densityGauss Quadrature Rulesettingn = 4, five Gauss quadra-
estimators are in millisecond scale, since only simplelaigie ture points and weights are generated using the method pre-
operations are required. After scaling by (10), the cuniudat sented in Section V. Table | shows the results from two kinds
density function and probability density function of thager of approximated density functions. Clearly, since the piob
inal random inputz (p(z) and p(&), respectively) from both ity density functions from Alg. 1 and Alg. 2 are differenteth

A. Synthetic Example
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—k=0 —k=0
400|—k=1 400|—k=1
—k=2 —k=2
300|—k=3 300 —k=3
—k=4 —k=4

200

100

0

0.2 04 06
T

0.8 1

0402

04 06 08 1
T

Fig. 4. Computed generalized polynomial-chaos basis fumstiq (z) (k =

0,---,4) for the synthetic example. (a) uses the probability derfsityction

from Alg. 1, and (b) uses the probability density functioanr Alg. 2.

TABLE |
CoMPUTED GAUSS QUADRATURE POINTS AND WEIGHTS FOR THE

SYNTHETIC EXAMPLE.

with p(z) from Alg. 1

with p(z) from Alg. 2

zF

wk

zF

wk

0.082620

0.311811

0.084055

0.332478

0.142565

0.589727

0.144718

0.576328

0.249409

0.096115

0.252980

0.089027

0.458799

0.002333

0.463207

0.002150

0.837187

0.000016

0.835698

0.000016

(CY

Fig. 5. Schematic of the Colpitts oscillator.

(b)

0.8

original CDF

0.6 o p@) by Alg. 1

0.4

0.2

0.8

0.6;

0.4

0.2

——original CDF
o p(&) by Alg. 2

%56 58 60 62 64
#= fose MHz

(©)

&

56 58 60 62 64
&= fose MHz

(d)

——PDF via KDE
+ (&) by Alg. 1

——PDF via KDE
+ p(&) by Alg. 2

0.3 0.3

resulting quadrature points/weights are also slightljedént.
The results from both probability density functions areyver
accurate. Using the probability density function from Alg.
we havee = 2.24 x 10714, and the error (30) i§.57 x 10~ 1%
if p(z) from Alg. 2 is employed. %

0.2 0.2

56 58 60 62 64 %4 56 58 60 62 64
#=fosc MHz #=fose MHz

B. Colpitts Oscillator Fig. 6. Cumulative density function (CDF) and probabilitynsiéty function
We now test our proposed algorithm on a more practicﬁIDF) approximation for the frequency of the Colpitts ostdr. The reference

example, the Colpitts oscillator circuit shown in Fig. 5.€Th PDF s generated by kemel density estimation (KDE).

design parameters of this circuit alg =2.2 k2, Ro=R3=10

kQ, Co=100 pF, C3=0.1uF, anda=0.992 for the BJT. The ) ) )

oscillation frequency is mainly determined by the valug$® constructed closed-form cumulative density functiand

of Ly, C; and Cs. In this circuit, L;=150 + A(0,9) nH Probability density functions from Alg. 1 and Alg. 2, the

and C;=100 + U(—10,10) pF are random variables with approximated density functions of the oscillation frequen

Gaussian and uniform distributions, respectively. We toes 2'€¢ compared with the Monte Carlo results in Fig. 6. The

a surrogate model using generalized polynomial chaos engﬁnstructed cumulative density functions by both methaods a

sions and the stochastic shooting Newton solver in [2]. Trgaphically indistinguishable with the result from Montar®.
oscillation frequencyf,.. is expressed as The bottom plots in Fig. 6 also show a good match between

our obtainedp(#) with the result from kernel density esti-
&= fose = f({) = 10; (31) mation. Again., .important properties of the density.fur]nﬁo
S ka(g) (i.e., _monotonl(:lty and b_oundedness of the CL_J_muIatlve_ ilens
k=1 function, and non-negativeness of the probability derfsity-
where the denominator is a 3rd-order generalized polynomH9n) are well preserved by our proposed density estimation
chaos representation for the period of the oscillator, witt¢) ~ @lgorithms.
being thek-th multivariate generalized polynomial-chaos basis Basis Function:Using the obtained density functions and
function of £ and T}, the corresponding coefficient. Althoughthe proposed implementation in Section V, a set of or-
the period is a polynomial function @f the frequency is not, thonormal polynomialsp,.(z)'s are constructed as the basis
due to the inverse operation. In order to extract the curivelat functions at the cost of milliseconds. Fig. 7 shows several
density function curve; x 10° samples are utilized to evaluategeneralized polynomial-chaos basis functions 2of Again,
the surrogate model (31) by Monte Carlo, which coz2s the basis functions resulting from our two density estiorati
seconds of CPU times on our Matlab platform. implementations are only slightly different.
Density Estimation:106 data points on the obtained cu- Gauss Quadrature Ruléhe computed five Gauss quadra-
mulative density function curve are used to constrpct) ture points and weights are shown in Table Il. Again the
andp(z), which costs only several milliseconds. After scalingesults from two density estimations are slightly diffearen
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0 02 04 06 08 1 0 02 04 06 08 1
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Fig. 7. Computed generalized polynomial-chaos basis fumstiq (z) (k =
0,---,4) for the Colpitts oscillator. (a) uses the probability dgnéunction

from Alg. 1, and (b) uses the probability density functionnfr Alg. 2. Fig. 8. Schematic of the low-noise amplifier.
TABLE I @ (b)
COMPUTED GAUSS QUADRATURE POINTS AND WEIGHTS FOR THE 1 — - 1 —
COLPITTS OSCILLATOR 08 original CDF 08 original CDF
- o p(&) by Alg. 1 : o p(&) by Alg. 2
with p(z) from Alg. 1 | with p(x) from Alg. 2 0.6 08
:Ek ’LUk xk ’LUk
0.170086] 0.032010 | 0.170935| 0.032456 o4 °4
0.309764| 0.293256 | 0.310016| 0.292640 02 02
0.469034 | 0.441303 | 0.468658 | 0.439710
0.632232| 0.217359 | 0.631249| 0.218274 =5 o5 o7 o8 O ™4 o5 s o7 os
0.788035| 0.016171 | 0.786226| 0.016820 +=THD +=THD
@
15 —PDF via KDE 15 ? Vi )
p(2) by Alg. 1 _IjDAb }:mAll(Dh
The results from both probability density functions areyver ") by M 2
accurate. Using(x) from Alg. 1, we haver = 1.3 x 10713, 19 10
and the error is.45 x 10713 if we usep(x) from Alg. 2.
5| 5
C. Low-Noise Amplifier
In this example we consider the statistical behavior of the °® 04 o5 o7 08 ° 04 05 06 07 08
I= THD z=THD

total harmonic distortion at the output node of the low-rois
amplifier shown in Fig. 8. The device ratios of the MOSFig. 9. Cumulative density function (CDF) and probabilityndity function
FETs arer/L1:W2/L2:500/O.35 and W3/L3:50/0.35. (PDF) for the to_tal harmonic distortion (THD) of thg Iovy-neiamplifier. The
The linear components ar®; =500, Ro=2 kQ, Cy=10 reference PDF is generated by kernel density estimation (KDE
pF, Cr.=0.5 pF, L;=20 nH and L3=7 nH. Four random
parameters are introduced to describe the uncertaitiemd
& are standard Gaussian variablgg, and &, are standard
uniform-distribution parameters. These random pararseter o
mapped to the physical parameters as follows: temperature _ag i . G
T=300 + 40¢, K influences transistor threshold voltage; un(t) = 2 z_:l (a"’ cos(jwt) + by Sm(jwt))
Vr=0.4238 + 0.1&, V represents the threshold voltage under =
zero Vis; R3=0.9 + 0.2{3 kQ and L,=0.8 + 1.2§, nH. Wlthw—%
The supply voltage i9/33=1.5 V, and the periodic input is T
Vin = 0.1sin(47 x 108t) V. 2 i

The surrogate model for total harmonic distortion analy- T/ ) cos(jewt)dt, by, = */v’“ ) sin(jwt)dt
sis is constructed by a numerical scheme as follows. First, 0
the parameter-dependent periodic steady-state solutitmea are computed by a Trapezoidal integration along the time. axi
output is solved by the non-Monte Carlo simulator in [2]Finally, the parameter-dependent total harmonic disioris
and is expressed by a truncated generalized polynomiakchabtained as
representation with< basis functions:

the entire periodo, T']. Next, v (¢) is expressed by a truncated
Fourier series:

The coefﬁuentsﬂ and bJ

Vour (&, 1) ka ()vr(€) (a2(@)"+(1(©))’ (32)
) . K . . . K . N
with a/(§) = 3= aj0u(€), V' (€) = 3= apn(8).
wherew(t) is the time-dependent coefficient of the general- k=1 k=1

ized polynomial chaos expansion for the periodic steadiestWe setJ = 5 in the Fourier expansion, which is accurate
solution and is actually solved at a set of time points durirgnough for this low-noise amplifier. We use a 3rd-order
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120— @ 20— 2 As shown in Fig. 11, asymptotic probability extraction
oo —k=1 tog| —k=1 produces some negative probability density function \alue
gol| —k=3 0l| —k=3 for the synthetic example and the Colpitts oscillator. The
o —2 o — 2 probability density functions of the low-noise amplifierear
u o also slightly below0 in the tail regions, which is not clearly
” u visible in the plots. Compared with the results from our
\ \ proposed algorithms (that are non-negative and graphicall
0 0 indistinguishable with the original probability densityric-
2552 oa L 06 08 1 2002 oa L06 08 1 tions), the results from asymptotic probability extrantivave

larger errors. As suggested by [29], [30], we increase theror
Fig. 10. Computed generalized polynomial-chaos basis fometi,(z) Of moment matching td5, hoping to produce non-negative
(k =0,---,4) for the low-noise amplifier. (a) uses the probability depsit results. Unfortunately, Fig. 11 (d) and (e) show that negati
fzunctlon from Alg. 1, and (b) uses the probability densitydtion from Alg. probability density function values still appear, althbu@;\e
’ accuracy is improved around the peaks. Further increabimg t
TABLE Il order to17, we observe that some positive poles are generated
COMPUTED GAUSS QUADRATURE POINTS AND WEIGHTS FOR THE b . f | . 41 S h s |
LOW-NOISE AMPLIFIER. y asymptotic waveform evaluation [. ]. uch positive pole
make the computed probability density functions unbounded

with p(z) from Alg. 1 | with p(z) from Alg. 2 and far from the original ones, as demonstrated by Fig. 11
zF wF zF wP (@) & (h). For the low-noise amplifier, the approximated
0.131542] 0.056766 | 0.140381| 0.073309 probability density function curve also becomes unbounded

0.251826 | 0.442773 | 0.261373| 0.470691 . : .
03853111 04432588 0.395704 1 0.400100 once we increase the order of moment matchingOtowhich

0.550101| 0.066816 | 0.561873| 0.055096 is not shown in the plot.

0.785055] 0.001056 | 0.798122| 0.000803 These undesirable phenomenon have been explained in

Section II-A [c.f. Items2) and 3)]. Although it is possi-

ble to compute the statistical moments in some other ways

) ¢ o (e.g., using maximum likelihood [53] or point estimation

This surrogate model is evaluated by Monte Carlo With10° | oihod [31]), the shortcomings of asymptotic waveform eval

samples at the cost 680 seconds. ation (i.e., numerical instability and causing negativeinse
Density Estimation:114 points are selected from the Obyggngnse for a linear system) cannot be overcome. Because

tained cumulative density function curve to generate) and he gensity functions from asymptotic probability extient

p(x) by Alg. 1 and Alg. 2, respectively, which costs onlyay e physically inconsistent, they cannot be reused in a

several milliseconds. After scaling, Fig. 9 shows the desegqchastic simulator (otherwise non-physical results rhay

form density functions for the total harmonic distortiontbis obtained). Since the obtained probability density furrctie

low-noise amplifier, which matches the results from Montg guaranteed non-negative, the computedn the three-
Carlo simulation very well. The generatgdr) monotonically oy relation (3) may become negative, whereas (4) implies
increases frond to 1, andp(z) is non-negative. Therefore, theihat 1. should always be non-negative

(3 .

obtained density functions are physically consistent.
Basis Function:Using the obtained density functions, sev-
eral orthonormal polynomials of are constructed. Fig. 10 VII. CONCLUSIONS

shows the first five basis functions of Again, the basis  votvated by hierarchical uncertainty quantification, sthi
functions resulting from our two density estimation 'mplepaper has proposed a framework to determine generalized
mentations look similar since the density functions fronthbo polynomial-chaos basis functions and Gauss quadratues rul
methods are only slightly different. _ from surrogate models. Starting from a general surrogate
Gauss Quadrature Ruléfive Gauss quadrature points anghqqe| closed-form density functions have been constducte
weights are computed and listed in Table lll. Again the rssuly,y 1yq monotone interpolation techniques. It has been shown
from two density estimations are slightly different due t9,5¢ the obtained density functions are physically cossist

the employment of different density estimators. When thge o muylative density function is monotone and bounded
density functions from piecewise cubic and piecewise ratio by 0 and 1; the probability density function is guaranteed

quadratic mterﬁolatlons are useﬂ, the the errors defin€80N .\ negative. Such properties are not guaranteed by registi
are3.11x 107" and4.34 x 107, respectively. moment-matching density estimators. By exploiting thecige
forms of our obtained probability density functions, gexter
D. Comparison with Asymptotic Probability Extraction ized polynomial-chaos basis functions and Gauss quadratur
Finally we test our examples by the previous asymptoticles have been easily determined, which can be used for
probability extraction algorithm [29], [30]. Since our sogate higher-level stochastic simulation. The effectivenessoof
models are not in linear quadratic forms, we slightly modifproposed algorithms has been verified by several synthetic a
asymptotic probability extraction: as done in [18] we uspractical circuit examples, showing excellent efficienaytbe
Monte Carlo to compute the statistical moments. All otherost of milliseconds) and accuracy (with errors aroufd').
procedures are exactly the same with those in [29], [30]. The obtained generalized polynomial-chaos basis funstion

generalized polynomial chaos expansion, leadingkte35.
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Fig. 11.

Probability density functions extracted by asyrtiptprobability extraction (APEX) [29], [30], compared witthe results from kernel density

estimation (KDE). Left column: the synthetic example. Cent@umn: frequency of the Colpitts oscillator. Right columatal harmonic distortion (THD)
of the low-noise amplifier. (a)-(c): with0 moments; (d)-(f): with15 moments; (g)-(i): with17 moments.

and Gauss quadrature points/weights allow standard sticha [7] —, “Why Quasi-Monte Carlo is better than Monte Carlo otinahy-

spectral methods to efficiently handle surrogate models in a

hierarchical simulator.
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