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Abstract—Brain-inspired arrays of parallel processing oscilla-
tors represent an intriguing alternative to traditional computa-
tional methods for data analysis and recognition. This alternative
is now becoming more concrete thanks to the advent of emerging
oscillators fabrication technologies providing high density pack-
aging and low power consumption. One challenging issue related
to oscillator arrays is the large number of system parameters and
the lack of efficient computational techniques for array simulation
and performance verification. This paper provides a realistic
phase-domain modeling and simulation methodology of oscillator
arrays which is able to account for the relevant device nonideali-
ties. The model is employed to investigate the associative memory
performance of arrays composed of resonant LC oscillators.

Index Terms—Associative memory, neurocomputing, oscillator
array, phase-domain modeling.

I. INTRODUCTION

D RIVEN BY THE continuous progress in CMOS fabri-
cation technology, digital computers based on Von-Neu-

mann machine have reached unprecedented computational ca-
pability. In spite of that, it is well recognized that there are still
classes of computational problems, such as data classification
and recognition, where conventional digital computers perform
very poorly compared to the elementary skill of human intelli-
gence. For these applications, it is expected that unconventional
brain-inspired neurocomputing characterized by a massive par-
allelism could lead to significant advances [1]. Arrays of weakly
coupled oscillators represent a promising approach to uncon-
ventional computation. It has been proved that oscillator arrays
can implement computational tasks such as pattern recognition
and associative memory by exploiting their natural attitude to
synchronization [2]–[4]. In these oscillator arrays, data infor-
mation is commonly encoded in the relative phase differences
achieved at synchronization, which makes computation robust
against intrinsic noise of circuit implementation.
However, while the associative memory capability has been

proved in principle using ideal oscillator models and couplings,
the actual implementation with physical devices still presents
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many unsolved challenging issues. A first issue is related to
finding oscillatory devices and coupling ways that allows a pre-
cise control of the array response in terms of relative phase dif-
ferences. Intuition suggests that proper coupling methods are
those that produce phase modulation while minimally affecting
oscillating amplitudes.
A second crucial issue consists in developing a robust de-

sign methodology. An oscillator array contains a huge number
of free parameters that determine its dynamics and synchroniza-
tion properties. Furthermore, the analysis of the phase response
of medium/large oscillator arrays via transistor-level simulation
is totally unfeasible due to the prohibitively long simulation
times it would take. Behavioral models of oscillators and cou-
plings are thus mandatory to enable oscillator arrays design and
associative-memory function verification.
In this paper, we describe an efficient simulation and de-

sign approach for arrays of resonant oscillators coupled through
transconductance elements. The methodology is developed in
the paper by referring to a LC tank oscillatory device but it
can be applied to other resonant nano-oscillators fabricated in
emerging technologies, such as MEMS resonant body transistor
[5]. Extensions to non-resonant oscillators [6], [7] are also pos-
sible in principle and will be the subject of future investigations.
First, we report detailed circuit-level simulations for the case

of an elementary array formed by two coupled oscillators. These
simulations provide fundamental evidences about the oscillator
responses and the shape of the coupling currents. Second, we
exploit the above gained insights to provide a realistic phase-do-
main macromodel of the oscillator array. Such a macromodel is
a generalization of previously presented ones [8]–[11] in that it
can incorporate the relevant array nonidealities, such as the non-
linear nature of coupling, the variability of oscillating frequency
and the unavoidable intrinsic noise. By means of a series of sim-
plifications, we show how the proposed model can be linked to
the theory of oscillating computing available in the literature [1],
[2], [12]. This theory is in fact essential to highlight the asso-
ciative memory capability of oscillator arrays. Finally, efficient
simulations are carried out with the nonlinear phase-domain
model to check the actual associative-memory performance for
a bench-mark case study. It is investigated how nonidealities
and coupling strength affect the associative memory capability.
The aforementioned issues are organized in the paper as fol-
lows: Section II analyses the elementary array with two cou-
pled resonant oscillators. In Section III, we provide the detailed
phase-domain model of the oscillator array and we link it to
the theory of oscillator neurocomputing. Section IV, describes
the associative memory procedure for pattern recognition. Fi-
nally, in Section V we illustrate numerical experiments for a
bench-mark case study.
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Fig. 1. Coupled LC oscillators. We consider the two different coupling ways
(a) and (b) shown in the boxes.

TABLE I
PARAMETERS OF THE LC OSCILLATOR

II. TWO COUPLED RESONANT OSCILLATORS

In this section, we analyze in details the elementary array
shown in Fig. 1 composed of two LC oscillators. The two oscil-
lators have the identical nominal parameters reported in Table I.
When working in free-running mode (i.e., with no couplings)
the two devices oscillate at the same frequency of 1.0261 GHz
and their output voltages (measured across
the two LC tanks) are purely sinusoidal waveforms with peak
values of 3.1 V. The oscillators are coupled through differential
pair transistors whose transconductance is controlled by a pro-
grammable current source . Such current sources are usually
found in current-steering digital to analog converters [13].
For this elementary array, we perform a series of detailed

electrical simulations considering the two different ways a) and
b) of inserting the coupling transistors shown in the boxes in
Fig. 1. We repeat simulations for several values of the polariza-
tion current . Fig. 2 shows the output voltages of the coupled
oscillators in the two cases a) and b) and for . In Case
a), the two oscillators synchronize in anti-phase while in Case
b) they synchronize in-phase. In both cases, the output voltages

and remain sinusoidal with the same peak value as
in the free-running mode. This indicates a first evidence about
the coupling circuit in Fig. 1: it produces phase modulation of
the oscillator responses without affecting their amplitude.

Fig. 2. Array outputs in case a) and b).

Fig. 3 shows the differential current1

(1)

which is injected by oscillator 2 into oscillator 1 for two dif-
ferent polarization currents and of
the coupling transistors. The differential pair works as a harsh
comparator and thus its output differential current is well
approximated by the sign function of its input voltage [14], i.e.,

(2)

In addition, we see that by selecting the polarization current
we are able to control the amplitude of the injected current,
i.e., we can modulate the strength of coupling. The evidences
above lead us to the schematic model plotted in Fig. 4 wheremu-
tual coupling is achieved through transconductance elements.
The module of transconductance parameters 2 de-
termines the coupling strength while their sign depends on the
way the gates of coupling transistors are connected to the output
nodes: Case a) in Fig. 1 corresponds to a positive
parameter (which leads to anti-phase synchronization) whereas
Case b) corresponds to a negative parameter (which
leads to in-phase synchronization).

III. ARRAY OF MUTUALLY COUPLED OSCILLATORS

We pass now to study an array with LC oscillators coupled
through differential pair transistors. Each oscillator of index
can be coupled to any other of index with a transconductance

, as schematically shown in Fig. 5. Couplings are symmetric,
i.e., .
First, we present a nonlinear phase-domain of the array that is

able to incorporate the relevant nonidealities of the system. Such
a detailed model allows performing realistic numerical simula-
tions of the synchronization response in relatively short times.

1Common mode current , which is almost con-
stant, is filtered out by the LC tank and thus can be neglected.

2For reasons that will be clear later, we consider symmetric couplings.
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Fig. 3. Injected differential currents. (Dotted line) simulated, (continuous line)
approximated by .

Fig. 4. Schematic model of coupling.

Fig. 5. Array with coupled oscillators.

Second, we derive a simplified model of the array. This simpli-
fied model is needed to link our model to the theoretical results
available in the literature about oscillator neurocomputing.

A. Nonlinear Phase-Domain Model for Numerical Simulations
We denote the output voltage of the
th oscillator when working in free-running mode, where

is its angular frequency. Oscillators are nominally identical and
are designed to oscillate at the same nominal angular frequency
. In practical implementations, however, small mismatches

among devices may introduce tiny variations of the oscillating
frequencies .
When the oscillators are connected via coupling transistors,

the mutually injected differential currents produce phase mod-

ulation of their responses. As a consequence, the output voltage
of the th oscillator can be written as

(3)
where is the time shift due to phase modulation,

is the total phase and repre-
sents the excess phase.
The phase-domain model of the array is thus given by the

following set of equations:

(4a)

(4b)

for . The function in (4a) is a -periodic
time function that describes the periodically-varying phase sen-
sitivity to the injected current [15]. This function can
be calculated through simulations of the free-running oscillator
with specialized numerical techniques [16], [17] as well as with
commercially available CAD tools [18]. Equation (4b) gives the
total differential current injected into oscillator of index
.
The condition for mutual synchronization of the array is that,

asymptotically for , the total phase difference between
any couple of oscillators of index and tends to a constant
value [19], i.e.,

(5)

At synchronization all devices oscillate with a common angular
frequency . For the th oscillator, it is thus possible to define
the angular variable that measures the deviation of its total
phase from the synchronization common one , i.e.,

(6)
where is the frequency detuning from .
Note that in the ideal case of identical oscillating frequencies

, we have that and thus .
We conclude that, for a given matrix

of transconductance values, the phase-domain model (4) allows
us to simulate, in a numerically efficient way, the time evolution
of the total phase variables and to check whether synchro-
nization condition (5) is verified or not. In these simulations it is
possible to include the variability of oscillating frequencies .
The model can be further enhanced by including the effects of
internal noise sources. To this aim, (4a) is modified as follows

(7)

where is a macro noise source that
reproduces the effects of white and flicker noise within the th
oscillator [20], [21].

B. Simplified model for Theoretical Investigation
In this subsection, instead, we move in the direction to sim-

plify the model (4) so as to highlight its intrinsic associative
memory capability. First, we exploit the fact that the sensitivity
function of harmonic oscillators is well approximated by
a sinusoid waveform delayed by with respect to the output
response [11], [22], i.e.,

(8)
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Second, we use averaging [23], [24]. The average shape of the
function obtained by integrating in time (4) can be ap-
proximated by using the simplification

(9)

within (4b). Thus, we substitute (4b) with the simplification (9)
into (4a) and use (3) and (8), obtaining

(10)

Keeping only the slowly varying terms that result from the
cosine products in (10), we get the averaged equations for the
total phase variables

(11)

where

(12)

and

(13)

With the notation above, the simplified model (11) looks very
similar to the well-known Kuramoto model [2], [12] where the
parameters are the connection coefficients while the param-
eter determines the strength of coupling. The parameters
defined in (13) give the scaling factors that allow us to map the
“abstract” connection coefficients of the Kuramoto model
into concrete transconductance values of the coupling tran-
sistors. It is also interesting to note that the connection coeffi-
cients have the opposite sign of the related transconductance
coefficients . Thus, a positive coefficient favors in-phase
synchronization between oscillators of index and while a
negative favors anti-phase synchronization.
Equation (11) can then be recast in terms of total phase devi-

ations defined in (6) as follows

(14)

By extending the approach in [2], it is possible to prove the
following result: if the symmetry property holds,
the phase model (14) is the gradient of the function

(15)
i.e.,

(16)

As a consequence

(17)

This means that, if oscillators are mutually synchronized, the
vector of their phase deviations , always
converges to an equilibrium point where and

which is a local minimum of
the function .
Depending on the connection coefficients , the function

can have many of such minima with any of them representing a
stored/known pattern. Starting from a given initial phase devi-
ation vectors, which represents a new pattern to be recognized,
the array will evolve towards the stored pattern which is closest
according to its internal “dynamic metric”; the array will thus
work as an associative memory. It is worth underlining that the
theory developed in this subsection holds provided that oscil-
lator array keeps synchronized and this can be verified via nu-
merical simulations of (4).

IV. ASSOCIATIVE MEMORY FOR PATTERN RECOGNITION

A. Information Encoding
Information can be encoded into the array by taking one of the

oscillators and its total phase deviation as a reference, denoted
, and then defining the relative phase differences

(18)

where by construction. The constant value that the
th phase difference assumes at synchronization

determines the th element

(19)

of the output vector

(20)

The element of the output vector can be seen as
the gray level (white for 1 and black for 1) of a pixel in
a pattern image. Fig. 8 shows, as an example, three different
patterns defined over pixels of a bench-mark case study
that we will employ in further simulations.

B. Initialization and Recognition
Suppose that a set of vectors

(21)

with are given and define the patterns to be mem-
orized in the array. The simplest way to memorize the patterns
is to set the connection coefficients with the well known Heb-
bian rule used to train Hopfield neural networks [25]

(22)

However, for oscillator arrays a different setting of the connec-
tion coefficients is needed to initialize the array according to
the pattern to be recognized [2]. If the latter is described by the
vector

(23)

then, during initialization, the connection coefficients are set to
the values

(24)

From (14) and neglecting detunings , we see that if
then while if then . Thus, during

initialization, the array dynamics will converge to the correct
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equilibrium phase differences that substituted in (19) give
the pattern-to-be-recognized vector [2].
In conclusion, the associative-memory operation consists in

a two-step procedure:
• Initialization: The connection coefficients and the cor-
responding coupling coefficients are first initialized to
the pattern to be recognized according to (24). The array
is then allowed to achieve synchronization with this cou-
pling.
In simulations, this corresponds to integrating in time the
phase model (4), with the coefficients (24), while starting
from random initial time shifts. Simulation is carried out
over a time interval until array synchronization is
reached. Then, the time shift values are calcu-
lated for .

• Recognition: The connection coefficients , and the re-
lated coupling coefficients , are now switched to the
setting (22) which includes all the memorized patterns col-
lectively. In this condition, the oscillator array moves to-
wards a new phase deviation vector. At synchronization,
phase deviation vector provides the recognized output pat-
tern. In simulations, the Recognition step corresponds to
integrating in time the phase model (4), with coefficients
(22), starting from the initial phase shifts , ob-
tained at the previous step. The waveforms of and
those of the total phases are cal-
culated over a sufficiently long time interval allowing the
array to achieve synchronization. The final phase differ-
ences , substituted in (19), supply
the recognized output pattern.

We conclude this section, by noting that the connection co-
efficients defined in (24) and (22) are transformed via (12) in
a fully-interconnected oscillator array. This implies that each
oscillator is connected to all of the other oscillators.
To relax this high-connectivity problem, alternative arrange-
ments have been proposed in the literature that employ time-de-
pendent interconnections [2], [26]. In this paper, we adopt a
time-varying switched-interconnected arrangement where each
oscillator, over a given oscillation cycle, is injected only by a
subset of oscillators. Formally, at the th oscillation
cycle the transconductance coefficients in (12) are transformed
into

(25)

where and with
, while are the scaling factors previously defined in (13).

At each oscillation cycle, the subset of transconductance cou-
plings is shifted over a new block of oscillator outputs so
as to iteratively cover all of the oscillators. This corresponds
to incrementing by 1 the index so that the transcon-
ductances cover the connection coefficients in

oscillating cycles.

V. NUMERICAL EXPERIMENTS

A. Array of Two Coupled Oscillators
In the first numerical experiment, we simulate themutual cou-

pling of the elementary array in Fig. 1 with the phase-domain
model sketched in Fig. 4 and described by (4). The results ob-
tained with the phase-domain model are compared with those
obtained with the detailed transistor-level simulations described

Fig. 6. Free-running response and sensitivity of a single LC oscil-
lator for current injection at the tank nodes.

in Section II. In this experiment, the two oscillators are con-
sidered identical with the parameters reported in Table I. The
output voltage of the free-running LC oscillator and its
sensitivity function are shown in Fig. 6. The samples of
these waveforms are employed in the phase-domain model (4).
We consider the two coupling arrangements previously investi-
gated in Section II and corresponding to: Case a)

; Case b) . Starting from arbitrary
initial time shifts and , the time shifts waveforms

are obtained by integrating the phase model (4), then, the
total phases , for are deduced.
Fig. 7 shows the simulated total phase difference .
In both cases, the total phase difference is bounded meaning
that oscillators synchronize. In perfect accordance with the re-
sults reported in Section II, we have that in Case a), the phase
difference tends to giving anti-phase synchronization while
in Case b) the phase difference goes to zero giving in-phase
synchronization. In both cases, the output voltages

calculated with the phase-domain model are per-
fectly superimposed to the waveforms shown in Fig. 2 and com-
puted with transistor-level simulations. Similarly, the coupling
currents provided by the phase-do-
main model match with good accuracy the waveforms com-
puted with transistor-level simulations, as shown in Fig. 3. This
confirms the reliability of the results provided by the phase-do-
main simulation.

B. Associative Memory Application
In the second experiment, we consider an array formed

with LC oscillators and implementing the associative
memory function described in Section IV. The three patterns,
described by vectors , to be memorized in the array are
shown in Fig. 8.
In these experiments, the oscillators may have different oscil-

lating frequencies . In what follows we consider two
different degrees of frequency variability and several coupling
strength parameter values.
In the first case, the frequencies are randomly generated

in a narrow frequency interval of centered in
. No internal noise is considered. In this case, a coupling
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Fig. 7. Phase differences in the elementary array for couplings a) and b).

Fig. 8. Patterns memorized in the array.

strength of , corresponding to weak coupling cur-
rents of the order fractions of , is enough to yield array
synchronization. Fig. 9 shows the time evolution of the phase
differences when the pattern-to-be-rec-
ognized shown in Fig. 10 (leftmost pattern at ) is loaded in
the connection matrix. During the Initialization simulation, i.e.,

, the phase differences split into
zero or values and the associated output pattern, computed
with (19), just replicates the pattern-to-be-recognized. During
the Recognition simulation, i.e., , the phase differences
evolve moving towards new constant steady state values close
to multiples of (i.e., array synchronizes). The output patterns
computed at the intermediate simulation times and re-
ported in Fig. 10 converge to the correct association. Similar re-
sults are obtained for the other patterns, e.g., for the distorted
pattern “2” shown in Fig. 11. We also verified that the cor-
rect pattern recognition occurs for both the fully-interconnected
and the switched-interconnected architectures described in Sec-
tion IV-B. In the case of a switched-interconned array, a small
ripple appears superimposed to the phase waveforms in Fig. 9
(the ripple is very small and is not shown in the figure). Interest-
ingly, the correct association capability of the array continues
to hold if the coupling strength parameter is increased till
about the upper value . This upper value corre-
sponds to coupling currents of the order of a few 10 .
For stronger coupling values, mutual synchronization is lost.
Fig. 12 shows that for larger , during the Recognition sim-
ulation, some oscillators desynchronize with the reference and
the related phase differences grow with no bounds in time. The
corresponding sequence of output patterns shown in Fig. 13 al-
ternates between the correct pattern “1” and the wrong pattern
“0.”

Fig. 9. Phase difference time evolution during the Initialization
and the Recognition simulations . Oscillators synchronize.

Fig. 10. Sequence of output patterns at different times for a distorted input “1.”

Fig. 11. Sequence of output patterns at different times for a distorted input “2.”

Fig. 12. Phase difference time evolution during the Initialization and Recog-
nition simulations for a too large coupling strength . Oscillators do not syn-
chronize.

In the second case, we test the memory association perfor-
mance for a much greater frequency variability: frequencies
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Fig. 13. Sequence of output patterns for a too strong coupling strength and a
distorted input “1.”

Fig. 14. Phase differences time evolution for large frequency variability com-
puted with a switched-interconnected array.

Fig. 15. Sequence of output patterns for a distorted input “1” and large fre-
quency variability.

are randomly generated in a frequency interval of
centered in . In addition, internal phase noise of each LC os-
cillator is included in the model as described in (7). Repeated
phase-domain simulations show that for large frequency vari-
ability mutual synchronization becomes more critical and oc-
curs for a narrower interval of coupling strength values

. In the presence of significant frequency variability,
in fact, a greater minimum coupling strength is needed to syn-
chronize the oscillator array. Fig. 14 shows the time evolution
of the phase differences for the distorted input “1” and for

in a switched-interconnected array with subset block
of dimension . Switched interconnection introduces
small phase ripples with a period equal to oscil-
lating cycles. After a Recognition simulation time of about 100
oscillation cycles, oscillators synchronize and the phase sepa-
rations state provides the correct output. However, the almost
constant values approached by the phase differences in Fig. 14
are quite spread around multiple of and this results in the less
clean output pattern shown in Fig. 15. A similar result is seen in
Fig. 16 for the Recognition of a distorted input “2.”
More importantly, we verified that if the Recognition simu-

lation is extended over a longer time interval, e.g., 5000 cycles,

Fig. 16. Sequence of output patterns for a distorted input “2” and large fre-
quency variability.

in some cases, synchronization is eventually lost and a wrong
output pattern is associated. A possible justification for such a
performance deterioration is that significant frequency detun-
ings can produce spurious phase transients, not considered
in the simplified analysis in Section III. In the long run, such
transients may disrupt the associative memory mechanism. Our
simulations show that this can be prevented by limiting as much
as possible the Recognition time, e.g., to some hundreds oscil-
lation cycles in our example.

VI. CONCLUSIONS
In this paper, we have presented a methodological approach

to the analysis and design of arrays of resonant oscillators for as-
sociative memory applications. A realistic phase-domain model
of the oscillator array has been described which is able to in-
corporate the relevant nonidealities of practical implementa-
tions. Relevant nonidealities are the nonlinear nature of cou-
pling, the limited achievable coupling strength as well as the
variability of oscillating frequency and phase noise. Simula-
tions have revealed that for very small frequency variability, as
it is the case for high Q crystal or MEMs resonators or in the
presence of some frequency tuning mechanisms, the correct as-
sociative memory behavior holds for a wide range of coupling
strength. By contrast, for relatively large frequency variability,
e.g., for low Q devices, the associative memory performance
results to be strongly affected by the coupling strength. In this
case, the proposed phase-domain macromodel provides an in-
valuable aid to the array design and to the definition of a proper
recognition timing.
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