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Abstract— This paper presents an effective approach to vari-
ability analysis of integrated capacitors due to manufacturing
process uncertainty. The proposed approach combines the gen-
eralized Polynomial Chaos method for uncertainty quantifica-
tion with the efficient Floating Random Walk algorithm for
capacitance extraction. For applications where detailed statistical
descriptions are required, the method allows achieving a 1000×

acceleration compared to standard Monte Carlo analysis. Appli-

cation to variability analysis in Digital to Analog Converters is
illustrated.

Index Terms— floating random walk algorithm, stochastic
models, uncertainty quantification.

I. INTRODUCTION

Capacitor devices manufactured in ultra-scaled integration

technologies suffer from significant capacitance variability due

to fabrication process uncertainty. Device variability rever-

berates on the performance of several Analog Mixed-Signal

(AMS) electronic circuits where capacitors are embedded [1].

For given nominal electrodes geometry, dielectric thickness

and material properties of the capacitor, the determination of

the static electrical capacitance implies solving the Laplace’s

equation for the electrical potential. Indeed, for capacitors

integrated in complicated 3D industrial layouts, the solution

of such a static problem with standard finite-element or

fine-difference techniques remains challenging in terms of

simulation time and memory requirements. For these rea-

sons, specialized techniques based on Floating Random Walk

(FRW) have been developed and implemented in capacitance

extraction tools [2]–[5]. FRW-based capacitance extraction can

be used in connection with standard iterative Monte Carlo

(MC) method to evaluate capacitance variability. However, MC

method tends to be very time consuming since many iterations

(e.g. ten of thousands) are commonly needed to calculate the

capacitance statistical distribution with the stringent precision

needed by AMS applications. In this paper, we explore a much

more efficient approach to uncertainty quantification that relies

on generalized polynomial chaos expansion (gPC) [6] and

stochastic collocation [7] or stochastic testing (ST) method [8].

Such a method provides detailed statistical descriptions of the

capacitance distribution, i.e. the complete Probability Density

Function (PDF) (and not only mean and standard deviation),
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and it can handle both Gaussian and non-Gaussian distributed

parameters. Furthermore, the gPC compact model, i.e. the

surrogate model, can be used hierarchically to propagate

capacitance variability to circuit level [12]. However, in the

standard implementation of gPC with ST method, it is assumed

that the samples of the physical quantity of interest are ideally

exact and thus exact interpolation conditions are enforced at

the test points. By contrast, the capacitance values extracted

with the FRW algorithm are affected by numerical uncertainty

and this can deteriorate the accuracy of gPC interpolation. In

this paper, we show how the test points selection and inter-

polation condition can be modified so as to obtain a smooth

(or regular) approximation of the relationship between capac-

itance value and uncertainty parameters. The method is based

on least-squares approximation and is able to filter out the

numerical uncertainty of FRW extraction. The contributions

of this paper are: 1) we show how standard implementation

gPC with ST method should be modified so as to deal with

the uncertainty of capacitance extraction/evaluation; 2) we use

the proposed method to deduce the detailed capacitance PDF

in the presence of metal wire width and spacing variability;

3) we illustrate how the calculated PDF can be exploited to

evaluate the differential nonlinearity (DNL) figure of merit for

charge redistribution Digital to Analog Converters (DACs).

II. UNCERTAINTY QUANTIFICATION OF PHYSICAL

QUANTITIES WITH GENERALIZED POLYNOMIAL CHAOS

In this section, we refer to a generic set of M physical

quantities X i, with i = 1, . . . ,M , associated to an integrated

electron device (e.g. the total and coupling capacitances among

the electrodes of a capacitor device). These physical quantities

all depend on the same set of l manufacturing parameters

p1, p2, . . . , pl (e.g. the geometrical dimensions of electrodes,

the oxide thickness) that have a certain degree of uncertainty.

The nth parameter can thus be written as

pn = p0n + ξn, (1)

where p0n is the nominal value and ξn is the parameter

uncertainty associated to a given manufacturing process. Math-

ematically, ξn is a zero-mean stochastic variable described by

a given Probability Density Function (PDF) ρn(ξn).
As a result, the physical quantities of interest can be seen

as multi-valued functions of the parameter uncertainties, i.e.

X i = X i(~ξ), (2)

where ~ξ = [ξ1, ξ2, . . . , ξl] is the parameter uncertainties vector.
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An effective stochastic description of each X i can be

achieved by means of the generalized polynomial chaos expan-

sion (gPC). In fact, under the hypothesis that X i is a second-

order stochastic process (i.e., it has finite variance), it can be

approximated by an order-O truncated series

X i(~ξ) ≈
Nb
∑

j=1

xi
j Hj(~ξ), (3)

formed by Nb multi-variate basis functions Hj(~ξ) weighted

by unknown polynomial chaos coefficients xi
j [6]–[9].

Each multi-variate basis function is given by the product

Hj(~ξ) =

l
∏

n=1

φjn(ξn) (4)

where φjn(ξn) is a univariate orthogonal polynomial of degree

jn whose form depends on the density function of the nth

parameter ξn. For instance, φjn(ξn) are Hermite polynomi-

als if ξn is a Gaussian-distributed variable, while φjn(ξn)
are Legendre polynomials if ξn is a uniformly distributed

variable [6]. For a given number of parameters l and series

expansion truncation order O, the degrees jn of univariate

polynomials in (4) forming Hj(~ξ) , for n = 1, . . . , l, are such

that
∑l

n=1
jn ≤ O. For truncation order O and number of

stochastic parameters l, the number of gPC basis functions is

given by [7]

Nb =
(O + l)!

O! l!
(5)

independently of the number M of physical quantities being

described.

According to collocation-based Stochastic Testing (ST)

method [8], the Nb unknown coefficients xi
j in the series

expansion (3) of X i(~ξ) are calculated by properly selecting

Ns = Nb testing points ~ξk, for k = 1, . . . , Ns in the

stochastic space where the physical quantity V i
k = X i(~ξk)

is evaluated/extracted. The same set of testing points ~ξ is used

for all of the M physical quantities X i being approximated.

At each testing point, the series expansions (3) are enforced

to fit exactly (i.e., the polynomials interpolate the samples) the

values V i
k .

Mathematically, this results in the following linear systems

A ~x i = ~V i, (6)

for i = 1, . . . ,M , where ~x i = [xi
1, . . . , x

i
Nb

]T and ~V i =
[V i

1 , . . . , V
i
Ns

]T are the column vectors collecting the unknown

coefficients and physical quantities values, respectively. The

linear systems in (6) are among them decoupled but share the

same Nb×Nb square matrix A = {ak,j} = {Hj(~ξ
k)}. Such a

matrix collects the gPC basis functions evaluated at the testing

points, i.e.

A =







H1(~ξ
1) . . . HNb

(~ξ1)
...

. . .
...

H1(~ξ
Ns) . . . HNb

(~ξNs)






. (7)

The selection of the testing points ~ξk in the stochastic

space is done so as to ensure the highest numerical accuracy

of the gPC-based interpolation scheme and of the associated

statistical description. This is achieved by considering the

highest order O univariate polynomial φ(ξn) describing the

nth parameter ξn with PDF ρn(ξn). The associated stochastic

integral is best approximated by a Gauss quadrature formula

∫

Ωn

φ(ξn)ρn(ξn)dξn ≈
O+1
∑

k=1

φ(ξkn)w
k
n, (8)

where ξkn is the kth quadrature node and wk
n the corresponding

weight. The O+ 1 quadrature nodes ξkn are thus good testing

points for the single uncertainty parameter ξn. Passing to the

multivariate case with l parameters, the testing points vectors
~ξk = [ξk1 , ξ

k
2 , . . . , ξ

k
l ] are determined by considering the multi-

dimensional grid of all the possible combinations (i.e. the

tensor product) of the univariate quadrature nodes.

It is worth noting that the number (O + 1)l of nodes in

the multi-dimensional grid is greater than the number Nb of

basis functions defined in (5). For instance, in the case of two

parameters (i.e. l = 2) and expansion order O = 3, the number

of nodes is 16 while the number of basis is only Nb = 10. To

make problem (6) well posed, a subset formed by Ns = Nb

quadrature nodes has to be selected as testing points. A proper

method for selecting the subset of testing points among the

quadrature nodes is presented in [8]. It relies on the criteria

of preferring those quadrature nodes with largest associated

weights wk
n and that lead to well conditioned matrix A.

Finally, once (6) has been solved and coefficients xi
j com-

puted, the compact models (3) allow deriving in a very efficient

way the detailed PDF for all of the X i quantities as well as

their mean values and standard deviations [8].

III. DEALING WITH THE UNCERTAINTY OF FRW-BASED

CAPACITANCE EXTRACTION

In this section, we investigate uncertainty quantification for

capacitor devices employed in electronic applications, e.g. in

DAC circuits. For a given electrodes geometry and physical

property, the capacitance values (i.e. the coupling capacitance

and total capacitances) can be efficiently extracted via the

iterative Floating Random Walk (FRW) algorithm [2]–[5]. In

the remainder of this paper, we specifically focus on coupling

capacitance since this is the relevant quantity for DAC circuits

[10]. Compared to other efficient techniques for capacitance

extraction, FRW does not need any space/geometry discretiza-

tion and this enables handling complex 3D layouts that are

otherwise intractable. However, FRW methods provide an

approximate capacitance estimation with an error that reduces

only as the inverse of the square root of the number of

walks NFRW . This fact can be critical when FRW is used

in connection with the gPC and ST methods presented in

Sec. II. In this case, in fact for each testing point described

by the uncertainty vector ~ξk, the FRW extractor supplies a

capacitance estimation of the type

C(~ξk) = X(~ξk) = Vk(~ξ
k) + ek, (9)

where Vk(~ξ
k) is the (unknown) exact capacitance value and ek

is the error introduced by the FRW algorithm. Such an error

is a random variable symmetrically distributed around its zero
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mean value [3]. Furthermore, due to the great number of walks

NFRW performed in each extraction of the capacitance value

(9), it follows that the FRW errors ek at different testing points
~ξk in the parameter space Ω are among them independent. As a

consequence, for any continuous deterministic function H(~ξ)
of the uncertainty parameters and any set of Ns test points ~ξk,

the following relation

lim
Ns→∞

1

Ns

Ns
∑

k=1

H(~ξk) ek = 0 (10)

holds [3].

The presence of an error in the physical variable estimation

X(~ξk) makes the scheme (6) inaccurate. To overcome this

drawback, we propose the following enhanced method. First,

among the (O + 1)l quadrature nodes in the l-dimensional

space, we select a number of testing points Ns > Nb greater

than the number of basis. At limit, all of the quadrature nodes

may be used as testing points. In this way, when the gPC

expansion (3) is imposed to fit the capacitance values (9) at

testing points, the following over-determined linear system is

obtained

Aaug ~x = ~V + ~e, (11)

where the Ns×1 column vectors ~V and ~e contains the exact ca-

pacitance values and FRW errors respectively. The augmented

Ns ×Nb rectangular matrix Aaug = {ak,j} = {Hj(~ξ
k)} col-

lects the Nb basis functions evaluated at the Ns testing points.

Second, the over-determined system (11) is solved in the

least-squares sense by multiplying both sides of (11) by the

augmented transposed matrix, i.e.

(AT
aug ·Aaug) ~x = A

T
aug (~V + ~e), (12)

and then solving the resulting well posed system (12). In the

remainder of this paper, we will refer to the gPC with method

(12) as Least-Squares Stochastic Testing (LS-ST). The good

feature of the LS-ST method can be seen by dividing both

members of (12) by Ns and then looking at the form of the

jth element in the right-hand side. It reads

1

Ns

Ns
∑

k=1

Hj(~ξ
k)V (~ξk) +

1

Ns

Ns
∑

k=1

Hj(~ξ
k) ek. (13)

When Ns grows, the first term in (13) remains finite while,

in view of (10), the second term tends to vanish. As a con-

sequence, the random errors introduced by the FRW method

tend to be filtered out by the LS-ST formulation (12). In this

way, the coefficients xj derived by solving (12) are such that

the associated gPC expansion (3) provides an accurate global

approximation of the X = X(ξ) relationship through a smooth

multi-dimensional surface. The surrogate model provided by

the gPC expansion (3) can then be used to evaluate the

detailed PDF of the capacitance as well as its mean value

µc = mean(C) and standard deviation σc = std(C). The

statistical variability of capacitor device can be propagated

hierarchically in the circuits and systems where it is embedded

[12].

V0

Vref

D1 D2 Db

C C 2C 2b−1C

Fig. 1. The circuit of the charge redistribution DAC.

IV. VARIABILITY ANALYSIS OF DIGITAL TO ANALOG

CONVERTERS (DAC)

As an example, we consider the charge redistribution DAC

shown in Fig. 1. This circuit is made of a bank of b + 1
capacitors whose values are multiple of the unit capacitance

C, i.e. C0 = C and Ci = 2i−1C for i = 1, . . . b. Given

a digital word described by b digits D1, . . . , Db, the circuit

converts it into the analog output voltage

V0 = Vref ·
(

b
∑

i=1

DiCi

)

/

(

C0 +

b
∑

i=1

Ci

)

, (14)

where Vref is a reference voltage level. The statistical fluctua-

tions of the unit capacitance C, produce statistical fluctuations

in the bank capacitor value Ci and eventually in the analog

values V0. The values of capacitors Ci are distributed with

the same PDF as C but with the mean value mean(Ci) =
(2i−1)µc and standard deviation std(Ci) = (

√
2i−1)σc. As

a result, from the detailed PDF of C provided by the gPC

model we are able to evaluate the statistical distribution of

each output voltage level V0 by using (14) and MC method.

Finally, considering two consecutive values V L
0 < V H

0 taken

by the output voltage and the associated analog interval

(V L
0 , V H

0 ), the statistical distribution of the differential non-

linearity (DNL) is calculated as DNL = (V H
0 −V L

0 )/LSB−1,

where LSB= Vref/2
b denotes the nominal interval width

corresponding to the least significant bit.

V. NUMERICAL RESULTS

In this section, the gPC method is applied to the lateral-field

fringing capacitor whose layout is shown in Fig. 2 [10].

It is made of two interdigitated electrodes realized on the

same Metal layer (i.e one-layer MOM capacitor) whose layout

is defined by: the metal finger width W , finger spacing S
and overlap length L. A metal thickness Tm = 0.5µm is

assumed. Finger spacing and width are taken as the uncertain

manufacturing parameters p1 = S and p2 = W while overlap

length is fixed to L = 10µm. Stochastic parameters are

assumed to be mutually-independent and Gaussian distributed

around the mean values p01 = p02 = 0.3µm. In order to

calculate the gPC coefficients xj of the surrogate model (3),

we assume 10% standard deviations σ1 = σ2 = 0.03µm.

This makes the model valid over a sufficiently wide range

of parameter variations.

First, we use the gPC expansion (3) truncated to order

O = 3 in connection with standard interpolation-based ST
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Fig. 2. Top view of the capacitor layout.
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Fig. 3. (Black Cross Marker) The 2-dimensional grid of quadrature nodes.
(Red Circle Marker) Subset of nodes used as testing points in ST interpolation.
(Blue Triangle Marker) Points used as a check.

method (6). Fig. 3 shows all the sixteen quadrature nodes

in the stochastic space of parameters and the subset of ten

nodes selected with the algorithm in [8] and used as testing

points. At testing points, the corresponding capacitance values

are extracted with the FRW algorithm. For each extraction, we

run NFRW = 80, 000 random walks (which corresponds to an

estimated extraction uncertainty of ≈ 0.06 fF). With the gPC

coefficients xj derived by solving ST system (6), we then use

the compact gPC model (3) to predict the capacitance values

at some new points (i.e. not employed in interpolation) used

for accuracy check.

Second, for the same gPC order O = 3, we compute the

expansion coefficients with the enhanced LS-ST method (12)

presented in this paper. With the LS-ST method, all of the

sixteen quadrature nodes in Fig. 3 are employed as testing

points. For a fair comparison with ST, when using the LS-ST

method the capacitance value at each testing point is extracted

by running a smaller number NFRW = 50, 000 of random

walks. In this way, the total computational time (e.g. the

product Ns × NFRW ) is kept the same for LS-ST and ST

methods. Fig. 4 reports the capacitance values predicted by

gPC ST and LS-ST methods at considered check points along

with the values extracted with the FRW method by running

2, 000, 000 walks 1. It is seen how ST interpolation exhibits a

significant discrepancy compared to the reference FRW with a

1This corresponds to a FRW extraction uncertainty of ≈ 0.008 fF and thus
it is considered as accurate reference.

0.24 0.25 0.26 0.27 0.28 0.29 0.3
1.8
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2

2.1

2.2

2.3

2.4

ST

LS-ST

C
[f

F
]

S [µm]

Fig. 4. Capacitance values at check points: (Black Square Marker) Reference
values provided by FRW (2, 000, 000 of walks/per point). (Blue Triangle
Marker) Capacitance values predicted by ST. (Red Circle Marker) Capacitance
values predicted by enhanced LS-ST. (Green Dashed Marker) Capacitance
values predicted by ST when trained by expensive FRW (2, 000, 000 of
walks/per point).

maximum error of ≈ 0.14fF near the border of the stochastic

space. By contrast, the LS-ST smooth approximation closely

follows the reference curve with a smaller approximation error

(always smaller than ≈ 0.02 fF) that keeps almost constant

along the curve.

As a further verification, we recalculate the gPC coefficients

for the conventional ST system (6) but now we use the accurate

capacitance values extracted by running 2, 000, 000 walks at

each sample point. The interpolation provided by the ST

method trained by the expensive FRW, reported in Fig. 4 with a

dashed line, moves closely to the reference and LS-ST curves.

We can conclude that, for the same computational time and

noisy samples extracted by efficient FRWs (< 100, 000 walks

per point), the LS-ST method provides more accurate gPC

expansions than conventional ST method. The accuracy of

ST method can be recovered by running a large number of

walks per sample (≈ 2, 000, 000 walks), however this requires

computational times that are ≈ 25× greater compared to LS-

ST.

The compact model (3), with the extracted coefficients, is

then used to efficiently evaluate the capacitance PDF. Fig. 5

shows the PDF derived with the LS-ST method when 5%
standard deviations of the finger spacing and width parameters,

i.e. σ1 = σ2 = 0.015µm, are assumed. In this case, the

computed mean value and standard deviation are mean(C) =
1.95 fF and std(C) = 0.072 fF, respectively. These values

are in agreement with the experimental values reported in

the literature [11] (Table-I in this reference) for custom-

fabricated one-layer MOM capacitors. By a comparison with

the Gaussian distribution of equal mean value and variance

reported in Fig. 5, we also observe how the capacitance PDF

is not strictly Gaussian and exhibits a non symmetric shape

around the mean value. This is due to the nonlinearity of

capacitance dependence on geometry parameters. Such a non-



0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789730, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2
0

1

2

3

4

5

6

P
D

F

C [fF]

Fig. 5. (Histogram) PDF of capacitance values derived with LS-ST:
mean(C) = 1.95 fF, std(C) = 0.072 fF. (Red Continuous Line) Gaussian
distribution of equal mean value and variance.
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Fig. 6. (Histogram) PDF of the mid-code DNL for a 8-bit DAC.

Gaussian capacitance distribution should be considered when

investigating variability at circuit level.

We check these results by using standard MC method

and FRW. In order to estimate the std(C) with a relative

accuracy of 2% (as needed by application to DACs) we have to

perform more than 10, 000 capacitance extractions (i.e. Monte

Carlo iterations) each one requiring running more than 80, 000
walks. Such an accurate MC analysis requires a computational

time which is about 1000× greater than that of the LS-ST

method. The PDF provided by the accurate MC method is

very close to that shown in Fig. 5 and has mean value and

standard deviation mean(C) = 1.95 fF and std(C) = 0.071 fF,

respectively. By contrast, the PDF provided by the standard

ST method (with extraction based on 80, 000 walks) predicts

a 14% greater standard deviation std(C) = 0.082 fF and a

more pronounced non-symmetric distribution.

Finally, the gPC expansion derived with the LS-ST method

is employed to evaluate the critical mid-code DNL, determined

by the consecutive codes 2b−1 − 1 and 2b−1, in charge

redistribution DAC, as explained in Sec. IV. Fig. 6 shows

the distribution of the DNL for a 8-bit DAC: 90% of the

realizations are such that −1 < DNL < 1 and thus no missing

code occurs. We verified that the percentage of successful

realizations increases to 100% for b = 6.

VI. CONCLUSION

In this paper, we have described an effective approach

for modeling the statistical uncertainty of integrated capac-

itors. The proposed model relies on state-of-the-art uncer-

tainty quantification techniques based on polynomial chaos

expansion and stochastic testing method. In this paper, we

have extended the available method to the case where the

extraction of capacitance values is done with the efficient FRW

algorithm and thus is itself affected by a degree of uncertainty.

The method has been employed to evaluate the effect of

metal wire width and spacing uncertainty on capacitance

distribution. We have shown how the method can provide

detailed statistical descriptions in the presence of relatively

large parameter variations and nonlinearities. For applications

where accurate detailed statistical descriptions are required,

the method can achieve a 1000× acceleration compared to

Monte Carlo analysis, for the same accuracy. An application

example to variability analysis of charge redistribution DACs

has been provided.
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