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Abstract—A generalized Hamiltonian method (GHM) and its  which is normally required in testing the validity of cir¢aind
half-size variant (HGHM) are proposed to characterize the spec- component models. Some decompose-and-test flows [13], [14]
tral behaviors of descriptor systems (DSs). With the preproces require the DSs to be minimal, and the system decomposition

IMPT (Improper Part Test), GHM and HGHM can be applied dt f Hi ind | ical
to test the passivity of immittance (impedance or admittance) and transformation may induce large numerical errors gus

DSs without system decomposition, system index assumption or Py possibly ill-conditioned matrix inversions). The eigafue-
minimal realization requirement, which are the major bottlenecks based DS passivity test in [15] is only applicable to scalar
of existing algebraic DS passivity tests. The proposed method functions. Frequency sweeping methods [16], [17] detent no
allows exact detection of nonpassive frequency intervals which asqive regions at a set of frequency points, but they mag mis
is not possible with frequency sweeping techniques. Numerical . . L .
results confirm the effectiveness of the proposed methods. nonpassive fre_ql_Jency intervals. Therefqre, 'F IS de&sr_atbl
develop a passivity assessment that can identify the neiveas
regions of general DSs efficiently and accurately.
We propose, for the first time, a flexible passivity test for
I. INTRODUCTION general DSs based on generalized Hamiltonian methods. The
HIS work is motivated by the demand of passive modnain contribution of this paper includes: 1) GHM and HGHM,
eling of on-chip components and electrical circuits if0 characterize the eigenvalues of DS spectral functiops; 2
VLSI simulations [1]-[3]. Passivity can be interpreted he t A complete DS passivity test based on ImPT, GHM and
inability of a system to generate energy internally, whish HGHM to test the improper and proper parts easily without
of great importance for stable global simulations. Howgve$ystem decomposition; 3) The observation that the GHM- and
nonpassive models may be generated from some stabi“ﬂ,GHM-based passivity tests are the supersets of tradltiona
preserving algorithms (e.g., vector fitting (VF) [4] andde Hamiltonian method and its half-size [5] counterpart, ezsp
approximation via Lanczos algorithm [1]) or even some théively, as well as the connection of GHM with GAREs [11],
oretically passivity-preserving techniques (e.g., [2)) fmite- [12]. A preliminary version of this work, which does not
precision machines. As a remedy, passivity enforcemeht te€ontain HGHM and related results, was presented in [18].
nigues [3] can eliminate or mitigate passivity violatiombese
enforcements need to locate the possible nonpasive regions ||. PRELIMINARIES OF LTI SYSTEM PASSIVITY
via passivity test in advance. For regular (or nonsingular) . ) . .
systems, numerous passivity assessments have been pn‘oposé:_or an |m_m_|tta_nce Im_ear tlme-|r_1var|ant (LT1) system, the
The reader is referred to [3], [5] and the references therein(SI1ICt) passivity is equivalent to its square transfer mrat
As a superset of regular state-space system, descriptb) P€Ing (strictly) positive real [9]:
systems (DSs) [6], [7] are widely used in VLS| simula- 1) H(s) has no poles irRe[s] > 0;
tions [2], [8]. Nevertheless, DS passivity tests are muals le 2) H(s) = H(s) whereo stands for the conjugate of
developed compared with their regular system counterparts3) The spectral function(jw) = HUIEATGL) > ) for
The O(n®) computation renders the extended LMI (linear all w € R (> for strict positive realness), whetemeans
matrix inequation) tests [9], [10] impractical for genebBsbs. the conjugate transpose operation.

Ref. [10] presented a cheaper method based on generaliggd a regular state-space systéfis) = C'(sI — A)~'B+ D,

Schur decomposition, but it posed strict restrictions o8- syits passivity can be tested by the Hamiltonian matrix [5]:
tem observability and controllability. Some literaturessess

positive realness via generalized algebraic Riccati égsit M= { A —{3 } 1)
(GARESs) [11], [12], but the admissible requirement is also P —AT

very strong for practical physical models. Furthermoreneno
of these methods can locate the nonpassive frequency ggi

Index Terms—Descriptor system, GHM, HGHM, passivity.

of which any purely imaginary eigenvalue defines a boundary
?l%quency ~of passivity violations. In (1 = A — B(D +
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corresponds to regular cases). The transfer matrix of (2) isB. HGHM for Symmetric DSs

H(s)=C(sE - A)™'B+D. () Theorem 2: For symmetric DSs, if\ is not an eigenvalue

Here (A, ) is assumed to be regular, i.det(sE — A) is not of D, (J, K) defined in (6) reduces to a half-size matrix pencil

identically zero. There exists a Weierstrass form [9]: (Jn, Kp) = (A+ B\ — D)*IC, EA*IE), (12)
(A, F) = W({ g I 0 } , { qu ](\)] })T, (4) and the generalized eigenvalgie is replaced bys = w?.
n—gq

_ _ _ _ Proof: For symmetric DS,H*(jw) = H(—jw) =
whereW andT" are nonsingularf, denotes an identity matrix _c(jwE + A)~'B + D, and(J, K) can be written as
of dimensiong, F' and N (an indexy nilpotent matrix, i.e.,

N# = 0 and N#~! # 0) correspond to the finite and (J,K) = ({ s T } [ E0 }) (13)
infinite generalized eigenvalues 6fi, E), respectively. The ’ - =S| 0 E|”
Weierstrass form tells wheres = A+ B(2AI—2D)~*C, T = B(2A\I—2D)~'C. Noting
B p—1 . (J',K") = Z(J,K)Z" has the same generalized eigenvalues
H(s) = Cp(sly — F)" "By +M0+;S My, G) itn (J,K) if Z is invertible, we setZ = [ § _II } and get
Hp(s) —_——
Himp(s) , , 0 2(S — T) 2F
. Tk = ashr 20 e e
where[ C, C. | =CT ! and Bp =W™IB, My =

X o0 Assume )\ is an eigenvalue ofG(jw), then jw is also a
D = CocBooy My = =CooN"Boo (k= 1,..., = 1). Hp(s) generalized eigenvalue ¢f/’, K'), and there exists
and H;,,,,,(s) are the proper and improper parts, respectively.
The immittance DS in (5) is passive if and only if [, (s) —jwE S-T x1 1
2 2

is passive;M; > 0 and M, = 0 for any k& > 2. S+T —jwE
I1l. GHM AND HGHM THEORIES FORDSS which can be further reduced to
A. GHM for General DSs (Jn — w?Kp)z =0, 21 #0. (16)

Theorem 1: Assume) is not an eigenvalue O%DT for . _ _
the stable DS(E, A, B,C, D) (i.e., any finite s satisfying 1herefore,j = w= is a generalized eigenvalue 0fy,, Kp).
det(A — sE) = 0 is located on the left half plane), then  Conversely, setting:; = jw(S — T') "'z, we can arrive at

is an eigenvalue of+(jw) if and only if jw is a generalized (15) from (16) and then Theorem 1. [
eigenvalue of the matrix pencil/, K) defined as
(J,K) = ( {gfgjﬁg _ATB_Q(;;ZZBT }{ v IV. DS PassIVITY TEST

6 A Testing the Improper Part by ImPT
where@ = (2\I — D — D7), ] ) )
Proof: Assume) is an eigenvalue of the spectral function Denoting the highest order @f;,,,,,(s) by the integerd — 1
G(jw). Since H*(jw) = HT (—jw), we haver # 0 such that (1 < ¢ < u), we proposdmPT to characterize the improper

. e B . part of a DS. Given a set of positive real scalgré = 1,2, ...)
26wz ={[ ¢ B" |, { _cT } T D+ D fr=2)z. with 5, = ns; (n > 1), the matrix norm ofH (s;) is
)

_ ]wE —A . _ M 9 H S
HereQ., = { JWET 4 AT } We rewrite (7) as |H(s:)|| = 85" || Mc_1 + ; 4t 51;(_1) ‘ (17)
Q'[C BT ]z=u ©) ) Z
B If s; is large enoughs$™'M,_, dominatesH (s;). In this
with z = Q1 { o } x # 0. Equation (8) implies case, we hava/, ; + M2 4. Bol) & a7 ) and
- B - [ H (si41)] -
ot { }Q '[Cc BT Jz=q¢, 9) e . A (18)
—CT [ ] ([ H (si) |
which is equivalent to Therefore, the system index can be computed by
Jz = jwKz. (20) His:
- D ¢ = og, (Lt 19)
Conversely, denotingy := Q' [ C BT |z (w # 0, | H (s5)]|

observed in (9)) and pre-multiplying both sides of (9) b

01 [ c BT ] we reach Vvhere[o] represents rounding. In practical implementations,
until Hlogn(w)} —logn(w)’ < d. Hered is a

can be set arounth — 100, and we may start with a randomly
—10° with s
Q'[c BT BT — (11) selected number (e.gs; = 10°) and then replace; with s,
- TH ()] TH ()]
which is equivalent to (7), implying\ is an eigenvalue of small positive constant used to control numerical erromrsces
G(jw). B s; is exponentially increased, the iteration can convergg ver
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Fig. 1. An illustrative example for nonpassive region ideceition.

fast. If ( > 3, we haveMs # 0 and the DS is nonpassive. In

CaseC =2, H(Sl) = Hp(s,) + Himp(si) ~ s; My + My, then <
]\41 ~ H(Si+1) — H(SL) B (20) G(jw},)>0 for all k? >  System i; passive
Si+1 — 54 _ No
. . A
With a numerical error control, (20) can also be used to
compute M, with a high accuracy. In impulse-free DSs, the

denominator in (19) might approach zero in cadg = 0, Fig. 2. The

so (19) may give erroneous results. In this case, we replace

H(s;) with H(s;) + I,,, to compute(. @ ®
Hereafter, we assume th&;,,,(s) has been checked by ofl —Original response, port(2,

ImPT, ¢ < 2, andM; > 0 (or else the passivity test terminates

since we have already known the improper part is nonpassive)

In this caseH),(jw) + H, (jw) = H(jw) + H*(jw).

complete passivity test flow for DSs, includinguleg systems.

Magnitude (dB)

07 10° 1
Frequency (Hz)
©)

Numerical error

20/ —Proper part, port(2,2)

B. Testing the Proper Part by GHM and HGHM
Setting A = 0, we have(J, K) = (Jp, Ko) with

A -R
J = M = ~ ~ K = K. 21
== 5 5| ® (21)
. I . ' . Fig. 3. ImPT test for the MNA model (the iterati i in (19)).
Here M is the Hamiltonian matrix defined in (1). We note that me T festlorhe model (the Rerafioff meansi in (19)
this matrix pencil is used in [19], but it is just a special €as
of GHM. Besides passivity assessment, the proposed GHM Equivalent Model Conversion
theory may have potential use in the passivity enforcementAt the first glance, GHM/HGHM test requird3+ D to be

of descriptor-form models, which is under investigationr F nonsingular, which is not always satisfied in practical DSs.

Magnitude (dB)

2 5 O 5 10 107 10° 1
Number of iterations Frequency (Hz)

HGHM, setting\ = 0 gives a half-size matrix pencil this case, we need to perform an equivalent model conversion
. . in advance. Assume that € R is not an eigenvalue oD,
(Jno, Kno) = (A= BD™C, EATE). (22) thenD, = al — D is nonsingular. A new DS1'(s) realized
. . " . . by (E', A’, B',C’, D’) can be constructed as
Any purely imaginary (or positive real) generalized eigaoe
jw (or B = w?) of (Jo, Ko) (Or (Jno, Kpno) for symmetric B { E } s { A }
. - ) - —1 )
DSs) defines a crossover angular frequercyAssume® = 0 Dq (23)
{wi,...,wp} Wherew,; (i = 1,...,p) denotes thep crossover B _ [ B } ¢'=[C 1],D=al
points obtained from GHM or HGHM, then the passive and I ’ '

nonpassive regions df (jw) can be identified as follows:

1. If © is empty, testG(jwp) at a randomly selected sam
pling pointwy. The system is strictly passive @(jwg) > 0,
otherwise nonpassive at any frequency point.

2. If © is not empty, testG(jw,) at w;, € ¢ (k =
1,2,...,p+1) wherel; =(0,w1), £; =(w;—1,w;)fori =2, ....p
and/,;1 =(wp, 00). If G(jwy,) > 0, then the DS is passive in
the intervally, otherwise nonpassive ify,. ] N o

An illustrative example is shown in Fig. 1. For this DsD: Co_nnec_tlon to the Traditional Hamiltonian Method and
GHM and HGHM produce3 crossover points. We randomlyHalf-size Singularity Test
select one sampling point in each interval. Siggws;) < 0 For standard state-space models € I), the generalized
and G(jwy,) > 0 for £ = 1,2,4, the DS is nonpassive in eigenvalue solution of.J, K') reduces to the eigenvalue so-
(w2, ws3) but passive in other frequency bands. lution of J defined in (6), which has been widely used in

We noteH’(s) = H(s), but D'+ D'" and D’ are nonsingular.
“Therefore, the proper part df (s) can be assessed by testing
the passivity ofH’(s) via GHM or HGHM. The main com-
putation in GHM and HGHM tests is th€(n3) generalized
eigenvalue solution. HGHM-based test should be fster
than GHM-based method due to its half-size nature.
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Fig. 4. GHM and frequency sweeping results for the PEEC model. Fig. 5. Real part oftf,-(s).
TABLE |

passivity enforcements [3]. To check passivity, we ket 0 GHM TEST RESULTS FOR THE REDUCED MODEL
and getJy, = M (d(_efmed in (1)). For symmetrlc regular Imaginary generalized H, (jo)
systems, the generalized e|gepvalue solutlom@f), Khpp) in eigenvalues of Jo, Ko)
(22) can be replaced by the eigenvalue solution of 3.65e-13 & j3.3078 0.0000 +;0.0031

L 5.00e-14 + j1.2345 | 0.0000 —;0.0060

M, = A(A— BD~-C), (24)

which is the half-size singularity test firstly proposed ). [

Therefore, Hamiltonian method and its half-size variant An MNA Example for ImPT: This 9-port order-10913
are special cases of GHM and HGHM, respectively. All ahodel describes a large RLC network. Since the RLC circuit
them detect passivity violation regions by finding boundaryg passive,( should bel or 2 and M; > 0. To show the
frequencies, but GHM and HGHM can deal with DSs as wedlonvergence of ImPT, we sef = 103 andn = 10, and plot
as regular systems without restrictions éh The complete the numerical erroe; for i = 1,2,..,6 in Fig. 3(a), which

test flow is illustrated in Fig. 2. showse; decreases by about 2 orders each iteration. Setting
s; = 10* and s;.; = 10° in (19) yields¢ = 2 after 2.1
E. Strict Positive Realness of Impulse-free DSs seconds. The magnitude of port-2 to port-2 frequency respon

GARE [11], [12] is widely used to characterize the positivi? Fig- 3(b) increases linearly in the high-frequency band,
realness of impulse-free DSs. This part shows its connectiyhich also implies¢ = 2. Via (20), we get & x 9 diagonal
with GHM. SupposgA, E) is regular, impulse-free and + matrix Wlth positive diagonal elements, dd, > 0. To verify
DT > 0, then the following statements are equivalent. the numerical accuracy a¥f;, we compute of the “proper

1) H (s) is strictly positive real. part” Hy(s) = H(s) — sM, by (19). We ge = 1 for H,(s),

2) The generalized algebraic Riccati equation (GARE) implying H;(s) is impulse-free as expected. Meanwhile, the
port-2 to port-2 response aff1(s) in Fig. 3(c) also shows
H,(s) has no impulsive part. This example shows that ImPT
has a solutionX such that(A + kX, E) is stable. is efficient and accurate in practical implementations.

3) The matrix pencil(Jy, Ko) has no purely imaginary A PEEC Example for GHM: The SISO ordef1 reduced
generalized eigenvalues add, > 0 (M, is defined in (5)). model is obtained by performing PRIMA [2] on a PEEC
__Proof: The equivalence of 1) and 2) has been prove§g model of dimension 480 withh = 0. Both of them
in [11]. 3)=-1) is obvious. From Statement 2), we get are nonpassive in the low-frequency band. ImPT shows they

_ _ I _ I are impulse-free. After equivalent model conversion, GHM
det(o — ko) = det({ XTI } (o = sKo) { X I ]) test on the original model producé&d crossover points. We

ATX+ XTA+ X"RX+P=0, E"X=X"E>0 (25

— det( { sE — (A+ RX) 0 ) }) compute the transfer functions at these 59 points (dengted b
N 0 sET + (AT + XTR") H_(s)). Fig. 4 shows that the real part &f.(s) is zero. By
= det(sE — (A + RX))det(sE + (A + RX)). frequency sweeping, we get 29 boundary frequency points.

o o (26) The frequency sweeping resul (s) is plotted in Fig. 4.
Since(A+ RX, E) is stable,A+ RX + jwE is nonsingular. We note that all these 29 points are also detected by GHM.
Therefore, the matrix pencily, Ky) has no purely imaginary However, the other 30 crossover points are missed in fre-
generalized eigenvalues. The equivalence of 1) and 2) atagency sweeping test. Therefore, GHM is more reliable than
implies M, > 0, therefore, 3) can be derived from 2) and thé&equency sweeping. For the reduced model, GHM produces
above statements are equivalent. B 4 purely imaginary results listed in Table |, which repreaszn

We remark that GARE require$E, A) to be impulse- crossover frequency points. We also plot the real part of the
free, but GHM does not. Furthermore, GHM can locate theansfer function of the reduced modé¥((s)) in Fig. 5. The

passive/nonpassive regions whereas GARE can not. GHM results are accurately located at the crossover points o
real(H,(s)) with x-axis. We note that GHM test results in
V. NUMERICAL EXAMPLES Table | contain some numerical noise in the real parts, which

This section presents some numerical examples to verify tisealso observed in traditional Hamiltonian method [5].
proposed passivity test flow. All experiments are perforimed A SAW Filter for HGHM: This order-126 admittance
MATLAB R2006a on a 2.66 GHz 2G-RAM PC. symmetric DS is from a 3-terminal SAW filter. ImPT shows
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TABLE Il

@ CPUTIMES OF DIFFERENTDS PASSIVITY TESTS(sec).

=> ,“ — 1st eigenvalue
8 Loll—2nd ejgenvalue
S LI eigenvalue Model order | Weierstrass| SHH | GHM | HGHM
Q. rossover points from HGH
3. 50 0.2270 0.0781 | 0.0156 | 0.0013
. 100 0.4470 0.2969 | 0.1406 | 0.0156
& A\ | . 150 1.1093 | 0.9375 | 0.3906 | 0.0625
. - 200 2.6872 2.3281 | 0.8706 | 0.1250
Angular frequency (rad/sec) 300 10.725 8.2500 | 3.3750 | 0.3906
e Z2omin]] ®) 400 32.781 | 20.125 | 7.7938 | 0.8906
=, [[—Isteigenvalue ! J 500 51.676 39.719 | 17.328 | 1.7788
? :g:‘;;'ge”"a'“e | 600 124.83 69.208 | 25.813 | 2.9688
5 2 genvalue
$ .s|l_® Crossover points from HGH | 700 161.21 108.40 38.906 4.9219
2 L 800 289.37 166.64 | 65.670 | 7.6406
CON: ‘
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