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Passivity Test of Immittance Descriptor Systems
Based on Generalized Hamiltonian Methods
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Abstract—A generalized Hamiltonian method (GHM) and its
half-size variant (HGHM) are proposed to characterize the spec-
tral behaviors of descriptor systems (DSs). With the preprocess
ImPT (Improper Part Test), GHM and HGHM can be applied
to test the passivity of immittance (impedance or admittance)
DSs without system decomposition, system index assumption or
minimal realization requirement, which are the major bottlenecks
of existing algebraic DS passivity tests. The proposed method
allows exact detection of nonpassive frequency intervals which
is not possible with frequency sweeping techniques. Numerical
results confirm the effectiveness of the proposed methods.

Index Terms—Descriptor system, GHM, HGHM, passivity.

I. I NTRODUCTION

T HIS work is motivated by the demand of passive mod-
eling of on-chip components and electrical circuits in

VLSI simulations [1]–[3]. Passivity can be interpreted as the
inability of a system to generate energy internally, which is
of great importance for stable global simulations. However,
nonpassive models may be generated from some stability-
preserving algorithms (e.g., vector fitting (VF) [4] and Páde
approximation via Lanczos algorithm [1]) or even some the-
oretically passivity-preserving techniques (e.g., [2]) on finite-
precision machines. As a remedy, passivity enforcement tech-
niques [3] can eliminate or mitigate passivity violations.These
enforcements need to locate the possible nonpasive regions
via passivity test in advance. For regular (or nonsingular)
systems, numerous passivity assessments have been proposed.
The reader is referred to [3], [5] and the references therein.

As a superset of regular state-space system, descriptor
systems (DSs) [6], [7] are widely used in VLSI simula-
tions [2], [8]. Nevertheless, DS passivity tests are much less
developed compared with their regular system counterparts.
The O(n6) computation renders the extended LMI (linear
matrix inequation) tests [9], [10] impractical for generalDSs.
Ref. [10] presented a cheaper method based on generalized
Schur decomposition, but it posed strict restrictions on sys-
tem observability and controllability. Some literatures assess
positive realness via generalized algebraic Riccati equations
(GAREs) [11], [12], but the admissible requirement is also
very strong for practical physical models. Furthermore, none
of these methods can locate the nonpassive frequency regions,
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which is normally required in testing the validity of circuit and
component models. Some decompose-and-test flows [13], [14]
require the DSs to be minimal, and the system decomposition
and transformation may induce large numerical errors (caused
by possibly ill-conditioned matrix inversions). The eigenvalue-
based DS passivity test in [15] is only applicable to scalar
functions. Frequency sweeping methods [16], [17] detect non-
passive regions at a set of frequency points, but they may miss
nonpassive frequency intervals. Therefore, it is desirable to
develop a passivity assessment that can identify the nonpassive
regions of general DSs efficiently and accurately.

We propose, for the first time, a flexible passivity test for
general DSs based on generalized Hamiltonian methods. The
main contribution of this paper includes: 1) GHM and HGHM,
to characterize the eigenvalues of DS spectral functions; 2)
A complete DS passivity test based on ImPT, GHM and
HGHM to test the improper and proper parts easily without
system decomposition; 3) The observation that the GHM- and
HGHM-based passivity tests are the supersets of traditional
Hamiltonian method and its half-size [5] counterpart, respec-
tively, as well as the connection of GHM with GAREs [11],
[12]. A preliminary version of this work, which does not
contain HGHM and related results, was presented in [18].

II. PRELIMINARIES OF LTI SYSTEM PASSIVITY

For an immittance linear time-invariant (LTI) system, the
(strict) passivity is equivalent to its square transfer matrix
H(s) being (strictly) positive real [9]:

1) H(s) has no poles inRe[s] > 0;
2) H(s) = H(s̄) whereō stands for the conjugate ofo;
3) The spectral functionG(jω) = H(jω)+H∗(jω)

2 ≥ 0 for
all ω ∈ R (> for strict positive realness), where∗ means
the conjugate transpose operation.

For a regular state-space systemH(s) = C(sI −A)−1B +D,
its passivity can be tested by the Hamiltonian matrix [5]:

M =

[
Â −R̂

P̂ −ÂT

]

(1)

of which any purely imaginary eigenvalue defines a boundary
frequency of passivity violations. In (1),̂A = A − B(D +
DT )−1C, R̂ = B(D+DT )−1BT andP̂ = CT (D+DT )−1C.

In circuit or system simulations, we usually use the LTI DS:

Eẋ = Ax + Bu, y = Cx + Du, (2)

where x ∈ R
n denotes the state variables,E,A ∈ R

n×n,
B,CT ∈ R

n×m, D ∈ R
m×m, and rank(E) ≤ n (“=”
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corresponds to regular cases). The transfer matrix of (2) is

H(s) = C(sE − A)−1B + D. (3)

Here(A,E) is assumed to be regular, i.e.,det(sE−A) is not
identically zero. There exists a Weierstrass form [9]:

(A,E) = W (

[
F 0
0 In−q

]

,

[
Iq 0
0 N

]

)T, (4)

whereW andT are nonsingular,Iq denotes an identity matrix
of dimensionq, F and N (an index-µ nilpotent matrix, i.e.,
Nµ = 0 and Nµ−1 6= 0) correspond to the finite and
infinite generalized eigenvalues of(A,E), respectively. The
Weierstrass form tells

H(s) = Cp(sIq − F )−1Bp + M0
︸ ︷︷ ︸

Hp(s)

+

µ−1
∑

k=1

skMk

︸ ︷︷ ︸

Himp(s)

, (5)

where
[

Cp C∞

]
= CT−1 and

[
Bp

B∞

]

= W−1B, M0 =

D − C∞B∞, Mk = −C∞NkB∞ (k = 1, ..., µ − 1). Hp(s)
andHimp(s) are the proper and improper parts, respectively.

The immittance DS in (5) is passive if and only if [9]:Hp(s)
is passive;M1 ≥ 0 andMk = 0 for any k ≥ 2.

III. GHM AND HGHM THEORIES FORDSS

A. GHM for General DSs

Theorem 1: Assumeλ is not an eigenvalue ofD+DT

2 for
the stable DS(E,A,B,C,D) (i.e., any finite s satisfying
det(A − sE) = 0 is located on the left half plane), thenλ
is an eigenvalue ofG(jω) if and only if jω is a generalized
eigenvalue of the matrix pencil(J, K) defined as

(J, K) = (

[
A + BQ−1C BQ−1BT

−CT Q−1C −AT − CT Q−1BT

]

,

[
E 0
0 ET

]

),

(6)

whereQ = (2λI − D − DT ).
Proof: Assumeλ is an eigenvalue of the spectral function

G(jω). SinceH∗(jω) = HT (−jω), we havex 6= 0 such that

2G(jω)x = {
[

C BT
]
Ω−1

ω

[
B

−CT

]

+ D + D
T }x = 2λx.

(7)

HereΩω =

[
jωE − A

jωET + AT

]

. We rewrite (7) as

Q−1
[

C BT
]
z = x (8)

with z = Ω−1
ω

[
B

−CT

]

x 6= 0. Equation (8) implies

Ω−1
ω

[
B

−CT

]

Q−1
[

C BT
]
z = z, (9)

which is equivalent to

Jz = jωKz. (10)

Conversely, denotingw := Q−1
[

C BT
]
z (w 6= 0,

observed in (9)) and pre-multiplying both sides of (9) by
Q−1

[
C BT

]
, we reach

Q−1
[

C BT
]
Ω−1

ω

[
B

−CT

]

w = w, (11)

which is equivalent to (7), implyingλ is an eigenvalue of
G(jω).

B. HGHM for Symmetric DSs

Theorem 2: For symmetric DSs, ifλ is not an eigenvalue
of D, (J,K) defined in (6) reduces to a half-size matrix pencil

(Jh,Kh) = (A + B(λI − D)−1C, EA−1E), (12)

and the generalized eigenvaluejω is replaced byβ = ω2.
Proof: For symmetric DS,H∗(jω) = H(−jω) =

−C(jωE + A)−1B + D, and(J,K) can be written as

(J,K) = (

[
S T

−T −S

]

,

[
E 0
0 E

]

), (13)

whereS = A+B(2λI−2D)−1C, T = B(2λI−2D)−1C. Noting
(J ′, K′) = Z(J, K)ZT has the same generalized eigenvalues

with (J, K) if Z is invertible, we setZ =

[
I I
I −I

]

and get

(J ′

, K
′) = (

[
0 2(S − T )

2(S + T ) 0

]

,

[
2E

2E

]

). (14)

Assume λ is an eigenvalue ofG(jω), then jω is also a
generalized eigenvalue of(J ′,K ′), and there exists

[
−jωE S − T

S + T −jωE

] [
x1

x2

]

= 0,

[
x1

x2

]

6= 0, (15)

which can be further reduced to

(Jh − ω2Kh)x1 = 0, x1 6= 0. (16)

Therefore,β = ω2 is a generalized eigenvalue of(Jh,Kh).
Conversely, settingx2 = jω(S − T )−1x1, we can arrive at

(15) from (16) and then Theorem 1.

IV. DS PASSIVITY TEST

A. Testing the Improper Part by ImPT

Denoting the highest order ofHimp(s) by the integerζ − 1
(1 ≤ ζ ≤ µ), we proposeImPT to characterize the improper
part of a DS. Given a set of positive real scalarssi (i = 1, 2, ...)
with si+1 = ηsi (η > 1), the matrix norm ofH(si) is

‖H(si)‖ = s
ζ−1
i

∥
∥
∥
∥
∥
Mζ−1 +

Mζ−2

si

+ · · · +
Hp(si)

s
ζ−1
i

∥
∥
∥
∥
∥

. (17)

If si is large enough,sζ−1
i Mζ−1 dominatesH(si). In this

case, we haveMζ−1 +
Mζ−2

si
+ · · · +

Hp(si)

s
ζ−1

i

≈ Mζ−1 and

‖H(si+1)‖

‖H(si)‖
≈ ηζ−1. (18)

Therefore, the system index can be computed by

ζ =

[

logη(
‖H(si+1)‖

‖H(si)‖
)

]

+ 1, (19)

where[o] represents rounding. In practical implementations,η

can be set around10−100, and we may start with a randomly
selected number (e.g.,s1 = 105) and then replacesi with si+1

until
∣
∣
∣

[

logη(‖H(si+1)‖
‖H(si)‖

)
]

− logη(‖H(si+1)‖
‖H(si)‖

)
∣
∣
∣ < δ. Hereδ is a

small positive constant used to control numerical errors. Since
si is exponentially increased, the iteration can converge very
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Fig. 1. An illustrative example for nonpassive region identification.

fast. If ζ ≥ 3, we haveM2 6= 0 and the DS is nonpassive. In
caseζ = 2, H(si) = Hp(si) + Himp(si) ≈ siM1 + M0, then

M1 ≈
H(si+1) − H(si)

si+1 − si

. (20)

With a numerical error control, (20) can also be used to
computeM1 with a high accuracy. In impulse-free DSs, the
denominator in (19) might approach zero in caseM0 = 0,
so (19) may give erroneous results. In this case, we replace
H(si) with H(si) + Im to computeζ.

Hereafter, we assume thatHimp(s) has been checked by
ImPT, ζ ≤ 2, andM1 ≥ 0 (or else the passivity test terminates
since we have already known the improper part is nonpassive).
In this caseHp(jω) + H∗

p (jω) = H(jω) + H∗(jω).

B. Testing the Proper Part by GHM and HGHM

Settingλ = 0, we have(J,K) = (J0,K0) with

J0 = M =

[
Â −R̂

P̂ −Â

]

, K0 = K. (21)

HereM is the Hamiltonian matrix defined in (1). We note that
this matrix pencil is used in [19], but it is just a special case
of GHM. Besides passivity assessment, the proposed GHM
theory may have potential use in the passivity enforcement
of descriptor-form models, which is under investigation. For
HGHM, settingλ = 0 gives a half-size matrix pencil

(Jh0,Kh0) = (A − BD−1C, EA−1E). (22)

Any purely imaginary (or positive real) generalized eigenvalue
jω (or β = ω2) of (J0,K0) (or (Jh0,Kh0) for symmetric
DSs) defines a crossover angular frequencyω. AssumeΘ =
{ω1, ..., ωp} whereωi (i = 1, ..., p) denotes thep crossover
points obtained from GHM or HGHM, then the passive and
nonpassive regions ofH(jω) can be identified as follows:

1. If Θ is empty, testG(jω0) at a randomly selected sam-
pling point ω0. The system is strictly passive ifG(jω0) > 0,
otherwise nonpassive at any frequency point.

2. If Θ is not empty, testG(jω′
k) at ω′

k ∈ ℓk (k =
1, 2, ..., p+1) whereℓ1 =(0, ω1), ℓi =(ωi−1, ωi) for i = 2, ..., p
andℓp+1 =(ωp,∞). If G(jω′

k) > 0, then the DS is passive in
the intervalℓk, otherwise nonpassive inℓk.

An illustrative example is shown in Fig. 1. For this DS,
GHM and HGHM produce3 crossover points. We randomly
select one sampling point in each interval. SinceG(jω′

3) < 0
and G(jω′

k) > 0 for k = 1, 2, 4, the DS is nonpassive in
(ω2, ω3) but passive in other frequency bands.
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Fig. 3. ImPT test for the MNA model (the iteration# meansi in (19)).

C. Equivalent Model Conversion
At the first glance, GHM/HGHM test requiresD+DT to be

nonsingular, which is not always satisfied in practical DSs.In
this case, we need to perform an equivalent model conversion
in advance. Assume thatα ∈ R is not an eigenvalue ofD,
thenDα = αI −D is nonsingular. A new DSH ′(s) realized
by (E′, A′, B′, C ′,D′) can be constructed as

E
′ =

[
E

0

]

, A
′ =

[
A

D−1

α

]

,

B
′ =

[
B
I

]

, C
′ =

[
C I

]
, D

′ = αI.

(23)

We noteH ′(s) = H(s), butD′+D′T andD′ are nonsingular.
Therefore, the proper part ofH(s) can be assessed by testing
the passivity ofH ′(s) via GHM or HGHM. The main com-
putation in GHM and HGHM tests is theO(n3) generalized
eigenvalue solution. HGHM-based test should be 8× faster
than GHM-based method due to its half-size nature.

D. Connection to the Traditional Hamiltonian Method and
Half-size Singularity Test

For standard state-space models (E = I), the generalized
eigenvalue solution of(J,K) reduces to the eigenvalue so-
lution of J defined in (6), which has been widely used in
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Fig. 4. GHM and frequency sweeping results for the PEEC model.

passivity enforcements [3]. To check passivity, we setλ = 0
and getJ0 = M (defined in (1)). For symmetric regular
systems, the generalized eigenvalue solution of(Jh0,Kh0) in
(22) can be replaced by the eigenvalue solution of

Mh = A(A − BD−1C), (24)

which is the half-size singularity test firstly proposed in [5].
Therefore, Hamiltonian method and its half-size variant

are special cases of GHM and HGHM, respectively. All of
them detect passivity violation regions by finding boundary
frequencies, but GHM and HGHM can deal with DSs as well
as regular systems without restrictions onD. The complete
test flow is illustrated in Fig. 2.

E. Strict Positive Realness of Impulse-free DSs

GARE [11], [12] is widely used to characterize the positive
realness of impulse-free DSs. This part shows its connection
with GHM. Suppose(A,E) is regular, impulse-free andD +
DT > 0, then the following statements are equivalent.

1) H(s) is strictly positive real.
2) The generalized algebraic Riccati equation (GARE)

Â
T
X + X

T
Â + X

T
R̂X + P̂ = 0, E

T
X = X

T
E ≥ 0 (25)

has a solutionX such that(Â + R̂X,E) is stable.
3) The matrix pencil(J0,K0) has no purely imaginary

generalized eigenvalues andM0 > 0 (M0 is defined in (5)).
Proof: The equivalence of 1) and 2) has been proved

in [11]. 3)⇒1) is obvious. From Statement 2), we get

det(J0 − sK0) = det(

[
I

−XT I

]

(J0 − sK0)

[
I
X I

]

)

= det(

[
sE − (Â + R̂X) 0

0 sET + (ÂT + XT R̂T )

]

)

= det(sE − (Â + R̂X)) det(sE + (Â + R̂X)).
(26)

Since(Â + R̂X,E) is stable,Â + R̂X ± jωE is nonsingular.
Therefore, the matrix pencil(J0,K0) has no purely imaginary
generalized eigenvalues. The equivalence of 1) and 2) also
implies M0 > 0, therefore, 3) can be derived from 2) and the
above statements are equivalent.

We remark that GARE requires(E,A) to be impulse-
free, but GHM does not. Furthermore, GHM can locate the
passive/nonpassive regions whereas GARE can not.

V. NUMERICAL EXAMPLES

This section presents some numerical examples to verify the
proposed passivity test flow. All experiments are performedin
MATLAB R2006a on a 2.66 GHz 2G-RAM PC.
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TABLE I
GHM TEST RESULTS FOR THE REDUCED MODEL.

Imaginary generalized Hr(jω)
eigenvalues of(J0, K0)

3.65e-13 ± j3.3078 0.0000 +j0.0031
5.00e-14 ± j1.2345 0.0000 −j0.0060

An MNA Example for ImPT: This 9-port order-10913
model describes a large RLC network. Since the RLC circuit
is passive,ζ should be1 or 2 and M1 ≥ 0. To show the
convergence of ImPT, we sets1 = 103 andη = 10, and plot
the numerical errorεi for i = 1, 2, .., 6 in Fig. 3(a), which
showsεi decreases by about 2 orders each iteration. Setting
si = 104 and si+1 = 105 in (19) yields ζ = 2 after 2.1
seconds. The magnitude of port-2 to port-2 frequency response
in Fig. 3(b) increases linearly in the high-frequency band,
which also impliesζ = 2. Via (20), we get a9 × 9 diagonal
matrix with positive diagonal elements, soM1 > 0. To verify
the numerical accuracy ofM1, we computeζ of the “proper
part” H1(s) = H(s)− sM1 by (19). We getζ = 1 for H1(s),
implying H1(s) is impulse-free as expected. Meanwhile, the
port-2 to port-2 response ofH1(s) in Fig. 3(c) also shows
H1(s) has no impulsive part. This example shows that ImPT
is efficient and accurate in practical implementations.

A PEEC Example for GHM: The SISO order-51 reduced
model is obtained by performing PRIMA [2] on a PEEC
DS model of dimension 480 withD = 0. Both of them
are nonpassive in the low-frequency band. ImPT shows they
are impulse-free. After equivalent model conversion, GHM
test on the original model produces59 crossover points. We
compute the transfer functions at these 59 points (denoted by
Hc(s)). Fig. 4 shows that the real part ofHc(s) is zero. By
frequency sweeping, we get 29 boundary frequency points.
The frequency sweeping resultHs(s) is plotted in Fig. 4.
We note that all these 29 points are also detected by GHM.
However, the other 30 crossover points are missed in fre-
quency sweeping test. Therefore, GHM is more reliable than
frequency sweeping. For the reduced model, GHM produces
4 purely imaginary results listed in Table I, which represent 2
crossover frequency points. We also plot the real part of the
transfer function of the reduced model (Hr(s)) in Fig. 5. The
GHM results are accurately located at the crossover points of
real(Hr(s)) with x-axis. We note that GHM test results in
Table I contain some numerical noise in the real parts, which
is also observed in traditional Hamiltonian method [5].

A SAW Filter for HGHM: This order-126 admittance
symmetric DS is from a 3-terminal SAW filter. ImPT shows
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Fig. 6. HGHM test for the SAW model.

TABLE II
GHM AND HGHM TEST RESULTS FOR THESAW MODEL.

Imaginary results Positive results
√

β
of GHM of HGHM (β)

−1.4e-8 ±j21671.377 469648579 21671.377
−1.9e-8 ±j18029.84 325075192.6 18209.84
3.38e-8 ±j2645.316 6997698.35 2645.316

this DS is impulse-free. HGHM test produces 3 positive real
generalized eigenvalues, and GHM test produces 6 imaginary
generalized eigenvalues. Table II shows that the results from
GHM test have numerical noise in the real parts, but HGHM
does not suffer from this problem. The 3 crossover frequency
points from HGHM are plotted in Fig. 6, which shows the
HGHM test is very accurate.

CPU Time Comparison: We compare the CPU timing
of GHM and HGHM with two decompose-and-test methods:
SHH [13] and Weierstrass passivity tests [14]. For fairness,
in decompose-and-test routines the proper parts are tested
by Hamiltonian method. Experiments are performed on some
symmetric DSs with order from 50 to 800. The CPU times of
GHM, HGHM, SHH and Weierstrass passivity tests are listed
in Table III. It is shown that HGHM is about 8× faster than
GHM, which is expected due to its half-size property. GHM
is (> 2×) faster than SHH. The additional cost of SHH is
mainly from system decompositions. GHM, HGHM and SHH
are all faster than Weierstrass test, which coincides with the
observations in [13].

VI. CONCLUSION

A new DS passivity test flow based on GHM/HGHM
has been proposed for the first time. The most significant
advantage of this method is its ability of accurately detecting
the possible nonpassive regions, some of them may be missed
with frequency sweepings. With ImPT and equivalent model
conversion, GHM and HGHM are applicable to general and
symmetric DSs, respectively, without system decompositions.
Experiments have demonstrated the much higher accuracy of
GHM than frequency sweeping, and faster computation than
SHH and Weierstrass tests. In symmetric DSs, HGHM enjoys
an 8× speedup and a higher numerical accuracy over GHM.

TABLE III
CPU TIMES OF DIFFERENTDS PASSIVITY TESTS(sec).

Model order Weierstrass SHH GHM HGHM

50 0.2270 0.0781 0.0156 0.0013
100 0.4470 0.2969 0.1406 0.0156
150 1.1093 0.9375 0.3906 0.0625
200 2.6872 2.3281 0.8706 0.1250
300 10.725 8.2500 3.3750 0.3906
400 32.781 20.125 7.7938 0.8906
500 51.676 39.719 17.328 1.7788
600 124.83 69.208 25.813 2.9688
700 161.21 108.40 38.906 4.9219
800 289.37 166.64 65.670 7.6406
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