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Abstract

Uncertainty quantification has become an important task and an emerging topic in
many engineering fields. Uncertainties can be caused by many factors, including inac-
curate component models, the stochastic nature of some design parameters, external
environmental fluctuations (e.g., temperature variation), measurement noise, and so
forth. In order to enable robust engineering design and optimal decision making,
efficient stochastic solvers are highly desired to quantify the effects of uncertainties
on the performance of complex engineering designs.

Process variations have become increasingly important in the semiconductor in-
dustry due to the shrinking of micro- and nano-scale devices. Such uncertainties have
led to remarkable performance variations at both circuit and system levels, and they
cannot be ignored any more in the design of nano-scale integrated circuits and mi-
croelectromechanical systems (MEMS). In order to simulate the resulting stochastic
behaviors, Monte Carlo techniques have been employed in SPICE-like simulators for
decades, and they still remain the mainstream techniques in this community. Despite
of their ease of implementation, Monte Carlo simulators are often too time-consuming
due to the huge number of repeated simulations.

This thesis reports the development of several stochastic spectral methods to ac-
celerate the uncertainty quantification of integrated circuits and MEMS. Stochastic
spectral methods have emerged as a promising alternative to Monte Carlo in many
engineering applications, but their performance may degrade significantly as the pa-
rameter dimensionality increases. In this work, we develop several efficient stochastic
simulation algorithms for various integrated circuits and MEMS designs, including
problems with both low-dimensional and high-dimensional random parameters, as
well as complex systems with hierarchical design structures.

The first part of this thesis reports a novel stochastic-testing circuit/MEMS simu-
lator as well as its advanced simulation engine for radio-frequency (RF) circuits. The
proposed stochastic testing can be regarded as a hybrid variant of stochastic Galerkin
and stochastic collocation: it is an intrusive simulator with decoupled computation
and adaptive time stepping inside the solver. As a result, our simulator gains remark-
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able speedup over standard stochastic spectral methods and Monte Carlo in the DC,
transient and AC simulation of various analog, digital and RF integrated circuits. An
advanced uncertainty quantification algorithm for the periodic steady states (or limit
cycles) of analog/RF circuits is further developed by combining stochastic testing and
shooting Newton. Our simulator is verified by various integrated circuits, showing
102× to 103× speedup over Monte Carlo when a similar level of accuracy is required.

The second part of this thesis presents two approaches for hierarchical uncer-
tainty quantification. In hierarchical uncertainty quantification, we propose to em-
ploy stochastic spectral methods at different design hierarchies to simulate efficiently
complex systems. The key idea is to ignore the multiple random parameters inside
each subsystem and to treat each subsystem as a single random parameter. The
main difficulty is to recompute the basis functions and quadrature rules that are
required for the high-level uncertainty quantification, since the density function of
an obtained low-level surrogate model is generally unknown. In order to address
this issue, the first proposed algorithm computes new basis functions and quadra-
ture points in the low-level (and typically high-dimensional) parameter space. This
approach is very accurate; however it may suffer from the curse of dimensionality.
In order to handle high-dimensional problems, a sparse stochastic testing simula-
tor based on analysis of variance (ANOVA) is developed to accelerate the low-level
simulation. At the high-level, a fast algorithm based on tensor decompositions is
proposed to compute the basis functions and Gauss quadrature points. Our algo-
rithm is verified by some MEMS/IC co-design examples with both low-dimensional
and high-dimensional (up to 184) random parameters, showing about 102× speedup
over the state-of-the-art techniques. The second proposed hierarchical uncertainty
quantification technique instead constructs a density function for each subsystem by
some monotonic interpolation schemes. This approach is capable of handling general
low-level possibly non-smooth surrogate models, and it allows computing new basis
functions and quadrature points in an analytical way.

The computational techniques developed in this thesis are based on stochastic
differential algebraic equations, but the results can also be applied to many other
engineering problems (e.g., silicon photonics, heat transfer problems, fluid dynamics,
electromagnetics and power systems).

There exist lots of research opportunities in this direction. Important open prob-
lems include how to solve high-dimensional problems (by both deterministic and ran-
domized algorithms), how to deal with discontinuous response surfaces, how to handle
correlated non-Gaussian random variables, how to couple noise and random param-
eters in uncertainty quantification, how to deal with correlated and time-dependent
subsystems in hierarchical uncertainty quantification, and so forth.

Thesis Supervisor: Luca Daniel
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction and Research

Motivation

1.1 Process Variations in Nanoscale Design

Numerical simulation has been accepted as a standard step to verify the performance

of integrated circuits and microelectromechanical systems (MEMS). By running a

numerical simulator (e.g., SPICE and its variants [5–7] for circuit simulation, and

Coventorware and MEMS+ [8,9] for MEMS simulation), the performance of a design

case can be predicted and improved before the costly (and typically iterative) fabri-

cation processes. In traditional semiconductor design, given a specific design strategy

(e.g., the schematic and parameter values of a circuit or the 3-D geometry of a MEMS

device) designers can run a simulator to predict the corresponding performance out-

put (e.g., frequency of an oscillator circuit). In this type of analysis, it is assumed

that no uncertainties influence chip performance. However, this is not true in today’s

semiconductor design.

Many nano-scale fabrication steps (such as lithography, chemical polishing, etc.)

are subject to manufacturing variability. Consequently, randomness appears in the

geometric and material properties of devices. As a demonstration, Fig. 1-1 shows

some variations observed in practical circuit and MEMS fabrications. Such process

variations can significantly degrade the performance of a circuit or MEMS device. For
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Figure 1-1: Left: geometric variations in 45-nm SRAM cells (courtesy of IBM). Mid-
dle: fluctuations of electron density in a 45-nm transistor (courtesy of Gold Standard
Simulations Ltd.). Right: geometric imperfection in MEMS fabrications.

instance, the variations of transistor threshold voltage can lead to a huge amount of

leakage power [10, 11] and thus becomes a severe problem in low-power design. The

material and geometric uncertainties of VLSI interconnects [12–19] may cause huge

timing variations [20, 21]. Device-level uncertainties can propagate to a circuit level

and further influence a system-level behavior. Assume that we have have fabricated

1000 products for a given 3-D structure of a MEMS resonator. These MEMS chips

may have different resonant frequencies due to the fabrication process variations. If

we further utilize these MEMS resonators to build phase-lock loops (PLL), it is not

suprising to find that some of PLLs cannot work properly due to such variations in

MEMS resonators.

In this thesis we investigate uncertainty quantification techniques for integrated

circuits and MEMS, hoping to characterize the effect of process variations on chip

design and to improve design quality.

1.2 Uncertainties in Numerical Simulation

Many types of uncertainties may need to be considered in a general numerical mod-

eling and simulation framework. Below we summarize a few uncertainty sources.

• Parametric uncertainty, normally named “process variation" in electronic

design automation, may be present in the input variables of the computational
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model. For example, the threshold voltages of different transistors on a single

silicon wafer can be different due to the random doping effect. Consequently,

different chips on the same wafer can have different performances.

• Model uncertainty, also called structural uncertainty or model inadequacy,

is due to the inaccurate mathematical description of the physical or engineering

problem. In fast circuit analysis the parasitic effects are sometimes ignored; in

semiconductor device modeling, lots of simplifications and approximations are

employed even in the most advanced models. Such approximation can lead to

discrepancy between the simulated and actual results.

• Parameter uncertainty is due to the inaccuracy of some deterministic model

parameters. Note that parameter uncertainties are differerent from “parametric

uncertainties", since the latter are random variables. Assume that we have

a voltage-dependent nonlinear resistor R = a + bV where V is the voltage

across the resistor. In practice, we may not known the exact values of the

deterministic variables a and b, and thus some empirical values may be used in

practical computational models.

• Numerical uncertainty. This is typically generated by the numerical errors

and approximation. For example, when we solve a nonlinear equation F (x) = 0

by Newton’s iteration (which is employed in almost all types of nonlinear circuit

analysis), we may terminate the iteration and regard xk as an accurate result if

||F (xk)||2 ≤ ǫ. Actually, xk is not exactly equal to x.

• Experimental uncertainty. When measuring the “actual" performance of a

circuit or MEMS chip, some measurement errors will be inevitably introduced.

For example, let the actual resonant frequency of a MEMS resonator be f0, the

practical measurement result is f = f0 + fǫ where fǫ is a noise term.

In this thesis, we consider parametric uncertainties (i.e., process varia-

tions) only. This treatment is acceptable in most of design cases due to the maturity

of device modeling and deterministic circuit/MEMS simulation techniques. Extensive
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Figure 1-2: Forward and inverse problems.

literature has discussed how to extract the statistical information of process varia-

tions from experimental data [22–28]. Here we simply assume that a good description

(e.g., probability density function) has been provided.

1.3 Forward and Inverse Problems

Assume that the process variations are represented by a set of random parameters ~ξ ∈
Ω ⊆ R

d, and they are related to an output of interest y(~ξ) by a given computational

model. Two kinds of problems may be of interest (c.f. Fig. 1-2).

1. Forward Problems. In a forward problem, descriptions of ~ξ are given, and

one aims to estimate the statistical behavior of y(~ξ)) by running a circuit or

MEMS simulator. Such uncertainty quantification problems require specialized

stochastic solvers to complete the numerical computation very efficiently.

2. Inverse Problems. In this task, one aims to estimate ~ξ given some measure-

ment data of y(~ξ). This task requires iteratively solving many forward problems,

and sometimes it is ill-posed.

In this thesis we will focus on developing fast solvers for forward problems. Based

on the developed fast forward solvers, we hope to advance the techniques of solving

inverse problems in the near future.
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1.4 Computational Models in This Thesis

Assume that ~ξ is related to the output of interest y by a computational model:

F

(

~x(t, ~ξ), ~ξ
)

= 0, y
(

~ξ
)

= Y

(

~x
(

t, ~ξ
))

. (1.1)

Here ~x(t, ~ξ) ∈ R
n are unknown variables (or state variables). Mapping from ~x(t, ~ξ)

to the quantity of interest y by operator Y needs little extra computational cost.

Assumption 1. throughout this thesis, we assume that all random parameters are

independent, i.e., their joint probability density function (PDF) can be expressed as

ρ(~ξ) =
d
∏

k=1

ρk (ξk), (1.2)

with ρk (ξk) being the PDF of ξk ∈ Ωk.

In (1.1), F is a general mathematical abstraction. In electromagnetic computation,

F can be a Maxwell equation with uncertainties, which is actually a stochastic partial

differential equation or a stochastic integral equation. In network-based integrated

circuit and MEMS analysis, F can be a stochastic differential algebraic equation that

describes the dynamics of state variables ~x(t, ~ξ), as is described below.

1.4.1 Stochastic Circuit Equation

In stochastic circuit simulation, modified nodal analysis (MNA) [29] can be utilized

to obtain a stochastic differential algebraic equation

F

(

~x(t, ~ξ), ~ξ
)

= 0 ⇔
d~q

(

~x
(

t, ~ξ
)

, ~ξ
)

dt
+ ~f

(

~x
(

t, ~ξ
)

, ~u(t), ~ξ
)

= 0
(1.3)

where ~u(t) ∈ R
m is the input signal (e.g., constant or time-varying current and

voltage sources), ~x ∈ R
n denotes nodal voltages and branch currents, ~q ∈ R

n and

~f ∈ R
n represent the charge/flux term and current/voltage term, respectively. Vector
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~ξ = [ξ1; ξ2; · · · ξd] denotes d random variables describing the device-level uncertainties

assumed mutually independent.

1.4.2 Stochastic MEMS Equation.

A MEMS design with process variations can be described by a 2nd-order differential

equation

M
(

~z(t, ~ξ), ~ξ
) d2~z(t, ~ξ)

dt2
+ D

(

~z(t, ~ξ), ~ξ
) d~z(t, ~ξ)

dt
+ f̃

(

~z(t, ~ξ), ~u(t), ~ξ
)

= 0 (1.4)

where ~z ∈ R
ñ denotes displacements and rotations; ~u(t) denotes the inputs such as

voltage sources or mechanical forces; M, D ∈ R
ñ×ñ are the mass matrix and damp-

ing coefficient matrix, respectively; f̃ denotes the net forces from electrostatic and

mechanical forces. This differential equation can be obtained by discretizing a partial

differential equation or an integral equation [30], or by using the fast hybrid platform

that combines finite-element/boundary-element models with analytical MEMS device

models [8,31–33]. This 2nd-order differential equation can be easily converted to the

form of (1.3) by letting n = 2ñ

~x =





~z

d~z
dt



 , ~f =





f̃

0



 ,
d~q

dt
=





D M

I





d~x

dt
(1.5)

In this expression we have omitted the variables that influence each term.

1.5 Thesis Contribution and Organization

1.5.1 Contributions of This Thesis

This thesis focuses on the development of efficient forward solvers to accelerate the

uncertainty quantification of integrated circuits and MEMS. The novel contributions

include two parts.

In the first part, we propose novel intrusive algorithms to compute the uncertain-
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ties propogating from devices to circuits.

• Contribution 1. In Chapter 4, we propose an efficient intrusive solver called

stochastic testing [34, 35]. This formulation can be regarded as a hybrid ver-

sion of stochastic collocation and stochastic Galerkin. On one side, similar to

stochastic collocation its complexity is linearly dependent on the number of ba-

sis functions since decoupling can be exploited inside a Newton’s iteration. On

the other hand, it sets up a coupled deterministic differential equation by using

only a small portion of quadrature points, such that adaptive time stepping can

be implemented to accelerate the computation of coefficients in the generalized

polynomial-chaos expansion of ~x(~ξ, t).

• Contribution 2. Based on the proposed stochastic testing circuit simulator, an

advanced numerical solver is presented in Chapter 5 to quantify the uncertainty

of periodic steady states that are frequently used in analog/RF circuit and

power electronic circuit simulations [36]. By combining stochastic testing with

Newton’s shooting, novel periodic steady-state solvers for both forced circuits

and oscillator circuits are developed.

The second part of this thesis develops computational techniques that estimate

the system-level uncertainties induced by fabrication process variations.

• Contribution 3. Chapter 6 proposes a high-dimensional hierarchical algorithm

that employs stochastic spectral methods at different levels of design hierarchy

to simulate a complex system [37]. When the parameter dimensionality is high,

it is too expensive to extract a surrogate model for each subsystem by using

any standard stochastic spectral method. Furthermore, it is also non-trivial to

perform high-level simulation with a stochastic spectral method, due to the high-

dimensional integration involved when computing the basis functions and Gauss

quadrature rules for each subsystem. In order to reduce the computational cost,

some fast numerical algorithms are developed to accelerate the simulations at

both levels [37,38].
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• Contribution 4. Chapter 7 proposes an alternative approach to enable hier-

archical uncertainty quantification [39]. In order to handle general stochastic

surrogate models that may be non-smooth, we propose to compute the basis

functions and quadrature points/weights by first approximating the underly-

ing density functions. In Chapter 7, we tackle this problem by two monotonic

density estimation techniques.

1.5.2 Thesis Outline

This thesis is organized as follows:

• In Chapter 2, we give an introduction to some mathematical background. We

aim to make this background chapter as brief as possible.

• Chapter 3 surveys different computational techniques for solving forward un-

certainty quantification problems. We also review their applications in previous

circuit and MEMS simulation.

• Chapter 4 to Chapter 7 present the details of our four novel contributions,

including how to quantify the uncertainties propogating from devices to circuits

and how to compute them efficiently in a hierarchical complex system. In

these chapters, we will demonstrate various application examples arising from

integrated circuits and MEMS design.

• Finally, Chapter 8 summarizes the results of this thesis and discusses some

future work in this field.
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Chapter 2

Mathematical Background

This chapter introduces some background about generalized polynomial chaos, nu-

merical integration and tensors that will be used in the subsequent chapters.

2.1 Generalized Polynomial Chaos Expansion

Generalized polynomial chaos was introduced by Xiu and Karniadakis in 2002 [40],

and it has been widely used in stochastic spectral methods [4,41–44]. As a generaliza-

tion of Hermite-type polynomial chaos expansion [45] that approximates ~x(t, ~ξ) with

Gaussian random parameters, a generalized polynomial chaos expansion can handle

both Gaussian and non-Gaussian random parameters efficiently.

If ~x(~ξ, t) is smooth enough and has a bounded 2nd-order moment, it can be ap-

proximated by a finite-term generalized polynomial-chaos expansion

~x(t, ~ξ) ≈ x̃(t, ~ξ) =
∑

~α∈P
x̂~α(t)H~α(~ξ) (2.1)

where H~α(~ξ) is a basis function indexed by ~α, x̂~α(t) ∈ R
n denotes the corresponding

weight (or coefficient) for the basis function, and P is a set containing some properly

selected index vectors.

Definition 1 (Inner Product). In the stochastic space Ω and with a probability

density function ρ(~ξ), the inner product of any two general functions y1(~ξ) and y2(~ξ)
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is defined as
〈

y1(~ξ), y2(~ξ)
〉

Ω,ρ(~ξ)
=

∫

Ω

ρ(~ξ)y1(~ξ)y2(~ξ)d~ξ. (2.2)

In the generalized polynomial-chaos expansion (2.1), the basis functions are chosen

in a special way such that they are orthonormal to each other

〈

H~α(~ξ), H~β(
~ξ)
〉

Ω,ρ(~ξ)
= δ~α,~β.

Here δ~α,~β is a Delta function (the value of δ~α,~β is 1 if ~α = ~β, and 0 otherwise).

The basis functions are computed according to the density function of each random

parameter, as described below.

2.1.1 Constructing Basis Functions: Univariate Case

Consider a single random parameter ξk ∈ Ωk ⊆ R. Given its marginal density function

ρk(ξk), one can construct a set of polynomial functions subject to the orthonormal

condition:

〈

φk
ν(ξk), φ

k
ν′(ξk)

〉

Ωk,ρk(ξk)
=

∫

Ωk

φk
ν(ξk)φ

k
ν′(ξk)ρk(ξk)dξk = δν,ν′ (2.3)

where 〈, 〉Ωk,ρk(ξk) denotes the inner product in Ωk with density function ρk(ξk); δν,ν′ is

a Delta function; integers ν and ν ′ are the highest degrees of ξk in polynomials φk
ν(ξk)

and φk
ν′(ξk), respectively. In order to satisfy the constraint (2.3), one can construct

polynomials {φk
ν(ξk)}pν=0 by the following procedures [46]:

1. construct a set of orthogonal polynomials {πk
ν (ξk)}pν=0 with an leading coefficient

1 according to the recurrence relation

πk
ν+1(ξk) = (ξk − γν) π

k
ν (ξk)− κνπ

k
ν−1(ξk), ν = 0, 1, · · · p− 1

with initial conditions πk
−1(ξk) = 0, πk

0(ξk) = 1 and κ0 = 1. For ν ≥ 0, the
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Table 2.1: Univariate generalized polynomial-chaos (gPC) polynomial basis of some
typical random parameters [4].
Distribution of ξk PDF of ξk [ρk(ξk)]

1 univariate gPC basis φk
ν (ξk) Support Ωk

Gaussian 1√
2π

exp
(−ξ2

k

2

)

Hermite-chaos polynomial (−∞,+∞)

Gamma
ξ
γ−1
k

exp(−ξk)

Γ(γ) , γ > 0 Laguerre-chaos polynomial [0,+∞)

Beta ξk
α−1(1−ξk)

β−1

B(α,β) , α, β > 0 Jacobi-chaos polynomial [0, 1]

Uniform 1
2 Legendre-chaos polynomial [−1, 1]

1 Γ (γ) =
∞
∫

0

tγ−1 exp (−t) dt and B (α, β) =
1
∫

0

tα−1 (1− t)β−1 dt are the Gamma and Beta

functions, respectively.

recurrence parameters are defined as

γν =
E
(

ξk(π
k
ν )

2(ξk)
)

E ((πk
ν )

2(ξk))
, κν+1 =

E
(

ξk(π
k
ν+1)

2(ξk)
)

E (ξk(πk
ν )

2(ξk))
. (2.4)

Here E denotes the operator that calculates expectation.

2. obtain {φk
ν(ξk)}pν=0 by normalization:

φk
ν(ξk) =

πk
ν (ξk)√

κ0κ1 · · ·κν
, for ν = 0, 1, · · · , p. (2.5)

Some univariate generalized polynomial-chaos basis functions are listed in Ta-

ble 2.1 as a demonstration. It is worth noting that:

1. the univariate basis functions are not limited to the cases listed in Table 2.1;

2. when ξk is a Gaussian variable, its polynomial basis functions simplify to the

Hermite polynomial chaos [45].

2.1.2 Constructing Basis Functions: Multivariate Cases.

When the components of ~ξ are assumed mutually independent, the multivariate gen-

eralized polynomial chaos can be constructed based on the univariate generalized

polynomial chaos of each ξk. Given an index vector ~α = [α1, · · · , αd] ∈ N
d, the
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corresponding multivariate generalized polynomial chaos is constructed as

H~α(~ξ) =
d
∏

k=1

φk
αk
(ξk). (2.6)

According to (2.3) and (1.2), it is straightforward to verify that obtained multivariate

functions are orthonormal, i.e.,

〈

H~α(~ξ), H~β(
~ξ)
〉

Ω,ρ(~ξ)
=

∫

Ω

H~α(~ξ)H~β(
~ξ)ρ(~ξ)d~ξ = δ~α,~β.

Note that H~α(~ξ) is the product of different types of univariate polynomials when ξk’s

have different density functions.

2.1.3 Selecting Index Set P

An infinite number of basis functions may be required to obtain the exact value of

x(t, ~ξ). However, a finite number of basis functions can provide a highly accurate

approximation in many engineering problems. Given p ∈ N
+, there are two popular

choices for P [43]:

1. tensor product method. In the tensor product method, one sets P = {~α| 0 ≤
αk ≤ p}, leading to totally (p+1)d generalized polynomial chaos bases in (2.1).

2. total degree method. In order to reduce the number of basis functions, the

total degree scheme sets P = {~α| αk ∈ N, 0 ≤ α1 + · · ·+ αd ≤ p}, leading to

K =





p+ d

p



 =
(p+ d)!

p!d!
(2.7)

basis functions in total.
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There is a one-to-one correspondence between k (with 1 ≤ k ≤ K) and the index

vector ~α, thus for simplicity (2.1) is usually rewritten as

~x(t, ~ξ) ≈ x̃(t, ~ξ) =
K
∑

k=1

x̂k(t)Hk(~ξ). (2.8)

2.1.4 Advantages of Generalized Polynomial-Chaos

The most prominent advantage of generalized polynomial chaos is its fast conver-

gence rate: it converges exponentially for some analytical functions [4, 40, 44] as p

increase. Strict exponential convergence rates may not be observed in practical en-

gineering problems, but polynomial-chaos expansion still converge very fast (almost

exponentially) when the function of interest has a smooth dependence on ~ξ.

The second advantage is the convenience to extract some statistical information.

Thanks to the orthonormality of H~α(~ξ)’s in polynomial-chaos approximations, the

mean value and standard deviation of ~x(~ξ, t) are easily calculated as:

E

(

~x
(

t, ~ξ
))

= x̂~α=0(t), and σ
(

~x
(

t, ~ξ
))

=

√

∑

~α 6=0

|x̂~α(t)|2. (2.9)

Here σ() means standard deviation. High-order moments may also be calculated in

an analytical or numerical way.

2.1.5 Extension to Correlated Cases

Let ρk(ξk) be the marginal density function of ξk ∈ Ωk and ρ(~ξ) be the joint density

function of ~ξ ∈ Ω. When the random parameters are correlated, orthonormal mul-

tivariate polynomial basis functions cannot be computed by applying (2.6). Given

the orthonormal polynomials {φk
αk
(ξk)}pαk=0 for parameter ξk with marginal density

function ρk(ξk), one can construct a set of orthonormal basis functions by [47]

H~α(~ξ) =

√

ρ1(ξ1) · · · ρd(ξd)
ρ(~ξ)

d
∏

k=1

φk
αk
(ξk). (2.10)
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The numerical implementation is not trivial since the joint density function must be

marginalized. A stochastic-collocation implementation has been reported in [48] to

simulate the uncertainties of silicon photonic devices with Gaussian-mixture process

variations. Since the resulting basis functions are not polynomials any more, it is

observed in [48] that many basis functions may be required to approximate a smooth

output of interest.

In this thesis, it is assumed that all random parameters are mutually independent.

2.2 Numerical Integration

This section briefly reviews some popular numerical integration schemes that will be

used later in some stochastic spectral methods.

2.2.1 Univariate Case

Given ξk ∈ Ωk with a density function ρk(ξk) and a function g(ξk), one can employ a

quadrature method to evaluate the integral

∫

Ωk

g(ξk)ρk(ξk)dξk ≈
n̂

∑

j=1

g(ξjk)w
j
k. (2.11)

The quadrature points ξjk’s and weights wj
k’s are chosen according to Ωk and ρk (ξk).

There are two classes of quadrature rules: random and deterministic approaches.

Randomized Algorithms. Monte Carlo and its variants belong to the first

class, which can be utilized regardless of the smoothness of g(ξk). The basic idea

is as follows. One first picks N samples according to the density function ρk(ξk),

then evaluates function g(ξk) at each sample, and finally computes the integral as the

average of all samples of g(ξk). In Monte Carlo, the numerical error is proportional

to 1/
√
N , and thus a huge number of samples are required to achieve high accuracy.

When g (ξk) is a smooth function, deterministic quadrature rules such as Gauss

quadrature [49] and Clenshaw-Curtis rules [50, 51] can be employed. Such determin-
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istic approaches can employ only a small number of samples to evaluate the integral

with high accuracy.

Gauss Quadrature Method. With n̂ points, Gauss quadrature rule produces

exact results for all polynomials of degree ≤ 2n̂− 1. Gauss quadrature rule is closely

related to orthonormal basis functions as we described in Section 2.1.1. One can

obtain (m + 1) Gauss quadrature points and weights {(ξjk, wj
k)}m+1

j=1 by reusing the

recurrence parameters obtained in (2.4). The parameters κkν ’s and γkν ’s are used to

form a symmetric tridiagonal matrix J ∈ R
(m+1)×(m+1):

J (ν, ν ′) =































γkν−1, if ν = ν ′

√

κkν , if ν = ν ′ + 1
√

κkν′ , if ν = ν ′ − 1

0, otherwise

for 1 ≤ ν, ν ′ ≤ m+ 1. (2.12)

Let J = UΣUT be an eigenvalue decomposition, where U is a unitary matrix. The

ν-th quadrature point and weight of ξk are Σ(ν, ν) and (U(1, ν))2, respectively [49].

Clenshw-Curtis Method. Using n̂ = 2l quadrature points, Clenshaw-Curtis

gets exact results when the degree of g(ξk) is ≤ n̂ − 1. Clenshaw-Curtis scheme

generates nested quadrature points and assumes that ξk is uniformly distributed in a

bounded domain [−1, 1].

2.2.2 Multi-Dimensional Case

One can also evaluate a multidimensional integral in Ω ⊆ R
d using the formula

∫

Ω

g(~ξ)ρ(~ξ)d~ξ ≈
N̂
∑

j=1

g(~ξj)wj. (2.13)

where N̂ is the total number of quadrature points, and wj is the weight corresponding

to quadrature point ~ξj.

Assume that for each random parameter ξk, n̂ quadrature points and weights

{ξjk, wj
k}n̂j=1 have already been computed. Multidimensional quadrature rules can be
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constructed in various ways based on the available one-dimensional quadrature rules.

Tensor-Product Method. With the obtained 1-D quadrature points for each

ξk, a tensor-product rule generates N̂ = n̂d pairs of multivariate quadrature points

and weights to evaluate (2.13). Let ~α = [α1, · · · , αd] ∈ N
d be a vector index, there is

a one-to-one correspondence between ~α and j for 1 ≤ j ≤ N̂ . Then one can change

the notations and denote the j-th quadrature point and weight by {~ξ~α, w~α}, and one

has the corresponding multi-dimensional quadrature point and weight

~ξ~α = [ξα1
1 , · · · , ξαd

d ], and w~α =
d
∏

k=1

wαk

k . (2.14)

Sparse Grids. With Smolyak’s algorithm, sparse grid techniques [52,53] may use

much fewer quadrature points than the tensor-product rule, thus they are also widely

used to solve stochastic PDEs [54–57]. In [54–57] Smolyak’s algorithm produces

nested sparse grids because all random parameters are assumed uniformly distributed

(and thus Clenshaw-Curtis rule is used for all ξk’s). However, Smolyak’s algorithm

generates non-nested sparse grids when non-nested 1-D quadrature points are used

for some parameters (since a random parameter with non-uniform distribution may

not be handled effectively by the Clenshaw-Curtis rule). In sparse-grid approaches,

the total number of quadrature points N̂ is a polynomial function of d and n̂.

Randomized Algorithms. When the 1-D quadrature points are independently

generated by Monte Carlo, N̂ = n̂ multi-dimensional quadrature points can be eas-

ily constructed, with the j-th point ~ξj = [ξj1, · · · , ξjd]. Again, the multidimensional

integral in (2.13) can be evaluated as the average of {g(~ξj)}N̂j=1.

2.2.3 Selection of Numerical Integration Schemes

A proper approach should be selected dependent on the practical integrand function

g(~ξ).

When g(~ξ) is smooth and when the parameter dimensionality is not high, deter-

ministic quadrature rules are good choices. When d is very small (i.e., below 5),

tensor-product Gauss quadrature rules can work very well. As d becomes larger (e.g.,
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Figure 2-1: Demonstration of a vector (left), a matrix (center) and a 3-mode tensor
(right).

below 30), sparse grids are better choices since much fewer quadrature points are

required. When the parameter dimensionality is very high, Monte Carlo approaches

are the only choice since N̂ is independent of d (although thousands or millions of

samples are still required). Quasi-Monte Carlo uses a deterministic sequence of sam-

ples to evaluate multi-dimensional integration [58]. It can improve the convergence

rate of Monte Carlo when the parameter dimensionality is not too high, but it still

has curse-of-dimensionality problems for very high-dimensional problems.

When g(~ξ) non-smooth (e.g., when it is an indicator function in failure probability

analysis), Monte-Carlo-type algorithms are the only choice.

2.3 Tensors

2.3.1 Concepts Related to Tensors

Definition 2 (Tensor). A tensor A ∈ R
N1×N2×···×Nd is a multi-mode (or multi-way)

data array. The mode (or way) is d, which is also the total number of dimensions.

The size of the k-th dimension is Nk. An element of the tensor is A(i1, · · · , id), where

the positive integer ik is the index for the k-th dimension and 1 ≤ ik ≤ Nk. The total

number of elements of A is N1 × · · · ×Nd.

As a demonstration, Fig. 2-1 shows a vector (1-mode tensor) in R
3×1, a matrix

(2-mode tensor) in R
3×3 and a 3-mode tensor in R

3×3×4 in, where each small cube
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represents a scalar.

Definition 3 (Inner Product of Two Tensors). For A,B ∈ R
N1×N2×···×Nd, their

inner product is defined as the sum of their element-wise product

〈A,B〉 =
∑

i1,··· ,id
A (i1, · · · id)B (i1, · · · id). (2.15)

Definition 4 (Frobenius Norm of A Tensor). For A ∈ R
N1×N2×···×Nd, its Frobe-

nius norm is defined as

‖A‖F =
√

〈A,A〉. (2.16)

Definition 5 (Rank-One Tensors). A d-mode tensor A ∈ R
N1×···×Nd is rank one

if it can be written as the outer product of d vectors

A = v
(1) ◦ v(2) · · · ◦ v(d), with v

(k) ∈ R
Nk (2.17)

where ◦ denotes the outer product operation. This means that

A(i1, · · · , id) =
d
∏

k=1

v
(k)(ik) for all 1 ≤ ik ≤ Nk. (2.18)

Here v
(k)(ik) denotes the ik-th element of vector v

(k).

Definition 6 (Tensor Rank). The rank of A ∈ R
N1×···×Nd is the smallest positive

integer r̄, such that

A =
r̄

∑

j=1

v
(1)
j ◦ v(2)

j · · · ◦ v(d)
j , with v

(k)
j ∈ R

Nk . (2.19)

2.3.2 Tensor Decomposition

It is attractive to perform tensor decomposition: given a small integer r < r̄, approx-

imate A ∈ R
N1×···×Nd by a rank-r tensor. Popular tensor decomposition algorithms

include canonical decomposition [59–61] and Tuker decomposition [62, 63]. Canon-

ical tensor decomposition aims to approximate A by the sum of r rank-1 tensors
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[in the form of (2.19)] while minimizing the approximation error, which is normally

implemented with alternating least square [60]. This decomposition scales well with

the dimensionality d, but it is ill-posed for d ≥ 3 [64]. Tucker decomposition aims

to represent a tensor by a small core tensor and some matrix factors [62, 63]. This

decomposition is based on singular value decomposition. It is robust, but the number

of elements in the core tensor still grows exponentially with d.

Alternatively, tensor-train decomposition [65–67] approximates A ∈ R
N1×···×Nd by

a low-rank tensor Â with

Â (i1, · · · id) = G1 (:, i1, :)G2 (:, i1, :) · · ·Gd (:, id, :) . (2.20)

Here Gk ∈ R
rk−1×Nk×rk , and r0 = rd = 1. By fixing the second index ik, Gk(:, ik, :

)∈Rrk−1×rk becomes a matrix (or vector when k equals 1 or d). To some extent, tensor-

train decomposition have the advantages of both canonical tensor decomposition and

Tuker decomposition: it is robust since each core tensor is obtained by a well-posed

low-rank matrix decomposition [65–67]; it scales linearly with d since storing all core

tensors requires only O(Nr2d) memory if we assume Nk = N and rk = r for k =

1, · · · , d−1. Given an error bound ǫ, the tensor train decomposition in (2.20) ensures

∥

∥

∥
A− Â

∥

∥

∥

F
≤ ε ‖A‖F (2.21)

while keeping rk’s as small as possible [66].

Definition 7 (TT-Rank). In tensor-train decomposition (2.20) Gk ∈ R
rk−1×Nk×rk

for k = 1, · · · d. The vector ~r = [r0, r1, · · · , rd] is called TT-rank.

Recently, tensor decomposition has shown promising applications in high-dimensional

data compression [68–71] and in machine learning [72, 73]. Some efficient high-

dimensional stochastic PDE solvers have been developed based on canonical tensor

decomposition [74–76] (which is called “Proper Generalized Decomposition" in some

papers) and tensor-train decomposition [77–80]. In [81], tensor-train decomposition

was employed for high-dimensional function approximation.
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Chapter 3

Survey of Forward Uncertainty

Quantification Solvers

3.1 A Top-Level Figure

We would like to present a high-level engineering perspective of uncertainty quan-

tification before discussing any specific numerical solver. In practice, users aim to

complete various engineering tasks under some uncertainties (as shown in Fig. 3-1).

Some typical examples include:

• Yield or reliability analysis. In many circuit design cases (e.g., in SRAM

design), designers are interested in the probability that a chip fails to work. In

the design of a MEMS switch, designers may be interested in the life time (i.e.,

the maximum number of turn-on/turn-off before the device fails to work). The

estimated yield or reliability information can help designers to optimize their

design.

• Pricing or Binning. The fabricated chips are subject to performance uncer-

tainties due to process variations. A good decision on pricing could leverage

information about the statistics of chip performance (e.g., speed and power

consumption of the fabricated chips).

• Hierarchical Design. In order to build complex systems, designers usually
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Figure 3-1: A top-level figure of uncertainty quantification (discussion with Prof.
Luca Daniel and Dr. Tarek El-Moselhy).

employ hierarchical design methodology by reusing existing circuits or devices

as some subsystems in a complex system. When uncertainties exist, the yield

and reliability of the whole system may be estimated according to the statistical

information of each subsystem.

• Inverse Problems. Very often, engineers have some measurement data of a

circuit or system, and they want to infer the information of some parameters at

the lower level. For instance, when modeling a new generation of semiconductor

fabrication process, circuit designers may have the measurement data of some

testing circuits. Using these data, it is possible to infer the distribution of some

device parameters (e.g., transistor threshold voltage).

In order to complete a specific engineering task, a proper form can be chosen

to represent an output of interest y. Popular representations include (but are not

limited to) samples, density functions, statistical moments or surrogate models. In

a general sense a surrogate model can be any approximation of y that can be easily
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evaluated (for instance a reduced-order model). This thesis focuses on a specific

form that represents y by some basis functions of ~ξ. The representations in Fig. 3-

1 are interchangeable under certain conditions. Here we ignore the algorithms that

transform one representation to another since they are beyond the scope of this thesis.

A key problem in many practical uncertainty quantification problems is how to

obtain a first representation in Fig. 3-1. This step depends on the available informa-

tion. If physical prototypes (e.g., some fabricated chips) are available, one may be

able to collect some measurement samples and then estimate the moments [82]. Since

we aim to predict the uncertainties of a circuits or MEMS design before fabricat-

ing the chips, we instead start from a computational model. It is possible to obtain

either kind of representation if a proper computational model is provided. For in-

stance, starting from a response-excitation probability-density-function equation [83]

one may be able to compute the joint density function of some quantities when noise is

present in the input signals. Some numerical techniques are also available to compute

some low-order moments from a stochastic computational model [84].

This chapter provides a brief survey of some popular techniques that firstly obtain

some samples or a surrogate model from the computational model (1.1). These tech-

niques can be classified into two classes: non-intrusive solvers and intrusive solvers.

3.2 Overview of Non-intrusive and Intrusive Solvers

Non-intrusive Solvers are also called sampling-based solvers. A general non-

intrusive solver typically includes the following three steps:

• Step 1: one first generates N samples {~ξj}Nj=1 for the random vector ~ξ ∈ Ω.

• Step 2: one solves the computational model F(~x(t, ~ξj), ~ξj) = 0 at each sample

~ξj. This step generates a set of realizations {~x(t, ~ξj)}Nj=1 and {y(~ξj)}Nj=1.

• Step 3: one post-processes the obtained solution data {y(~ξj)}Nj=1 to obtain a

desired quantity of interest (e.g., the distribution, some statistical moments, or

a close-form function approximation of y(~ξ)).
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The main advantage of a non-intrusive solver is its ease of implementation — a readily

available deterministic solver (such as SPICE) can be used without any modifications

to run the simulation for each sample. The samples for ~ξ can be generated in either

a randomized or deterministic way, and different techniques can be employed in the

post-processing steps. Based on the difference in the first and third steps, non-

intrusive solvers can be further classified into different groups such as Monte Carlo [85–

87], fitting/regression [88,89], and stochastic collocation [54–57,90].

Intrusive Solvers first convert the stochastic equation F(~x(t, ~ξ), ~ξ) = 0 to a new

deterministic problem (with a larger problem size) and then directly obtain ~x(t, ~ξ) by

solving the new model only once. The main procedures are summarized below

• Step 1: one first approximates ~x(t, ~x) by the linear combination of K basis

functions, i.e., ~x(t, ~ξ) ≈ x̃(t, ~ξ) =
K
∑

k=1

x̂k(t)Ψk(~ξ).

• Step 2: one picks K testing functions {Φk(~ξ)}Kk=1 that form a K-dimensional

functional subspace. After that, a new deterministic computational model is

built by enforcing F(x̃(t, ~ξ), ~ξ) orthogonal to each testing function:

〈

F(x̃(t, ~ξ), ~ξ),Φk(~ξ)
〉

Ω,ρ(~ξ)
= 0 for k = 1, · · · , K. (3.1)

The resulting deterministic computational model can be written as

F(~x(t)) = 0 ∈ R
n×K , (3.2)

where ~x(t) ∈ R
n×K includes the coefficients for all basis functions {Ψk(~ξ)}Kk=1.

• Step 3: one solves (3.2) to obtain ~x(t) and the corresponding stochastic solution

x̃(t, ~ξ) =
K
∑

k=1

x̂k(t)Ψk(~ξ).

The main advantage of an intrusive solver is that (3.2) needs to be simulated

only once. On the other hand, simulating the resulting deterministic system may be

expensive due to the possibly large problem size.
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3.3 Monte Carlo Simulation

Monte Carlo [91] is a non-intrusive solver used in many fields, and it is implemented

in almost all commercial circuit simulators. In Monte Carlo, N samples {~ξj}Nj=1

are first generated according to PDF(~ξ), the joint probability density function of ~ξ.

A deterministic solver is then called to simulate F(~x(t, ~ξj), ξj) = 0 at each sample,

generating a set of deterministic solutions. Finally, all deterministic solutions are

utilized to compute the statistical information of interest. For instance, for any

quantity y(~ξ), its expectation value can be estimated as

E(y(~ξ)) ≈ 1

N

N
∑

j=1

y(~ξj) (3.3)

The error of Monte Carlo is asymptotically proportional to 1√
N

. Very often, a huge

number (thousands to millions) of samples are required to achieve an acceptable

level of accuracy. The excessive number of samples render the repeated simulation

prohibitively expensive in many engineering applications.

3.4 Fitting and Regression Based Techniques

Fitting or regression techniques belong to the family of non-intrusive solvers. Given

a set of samples {~ξj}Nj=1 (normally picked in a randomized way) and the correspond-

ing solution samples {y(~ξj)}Nj=1, an optimization or interpolation technique can be

employed to determine an approximation y(~ξ) ≈ ỹ(~ξ) =
K
∑

k=1

ŷkΨk(~ξ). In other words,

one can compute the coefficients of all basis functions by solving the linear equation

Aŷ = b (3.4)

where A ∈ R
N×K with A(j, k) = Ψk(~ξ

j), ŷ ∈ R
K with ŷ(k) = ŷk, and b ∈ R

N

with b(j) = y(~ξj). The post-processing techniques can be chosen dependent on the

number of samples available:
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• when N>K, (3.4) is over-determined, and thus one may solve a least-square

problem to minimize ||Aŷ = b||22, obtaining ŷ = (ATA)−1ATb;

• when N=K and A is invertible, one has ŷ = A−1b;

• whenN< K, (3.4) is under-determined, and thus a regularization is required. In

the machine learning community, regularized least-square is commonly utilized:

ŷ = argmin ||Aŷ − b||22 + λ||ŷ||22. (3.5)

In many engineering problems, ŷ has many zero elements, and thus one may

use L1 minimization to enforce the sparsity [92]

ŷ = argmin ||Aŷ − b||22 + λ||ŷ||1, (3.6)

where ||y||1 =
K
∑

j=1

|ŷ(j)|. The regularization parameter λ > 0 is selected typi-

cally by cross validation.

3.5 Stochastic Collocation

Stochastic collocation [54–57] is the most popular non-intrusive stochastic spectral

method. This approach also aims to approximate the state vector ~x(t, ~ξ) and/or

output y(~ξ) by a linear combination of some basis functions. By using generalized

polynomial chaos Hk(~ξ) as the basis function ( i.e., letting Ψk(~ξ) = Hk(~ξ)) and then

exploiting the orthonormal property of Hk(~ξ), the weight of each basis function can

be computed by a projection step. For instance

ŷk =

∫

Ω

y(~ξ)Hk(~ξ)PDF(~ξ)d~ξ ≈
N̂
∑

j=1

y(~ξj)Hk(~ξ
j)wj, (3.7)

where {~ξj, wj}N̂j=1 are picked by a proper quadrature rule. Similar to that in Monte

Carlo and fitting/regression approaches, y(~ξj) at each quadrature point is obtained

by solving a deterministic problem F(~x(t, ~ξj), ~ξj) = 0. In order to make stochastic
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collocation efficient, one must use as few quadrature points as possible. For low-

dimensional problems, the deterministic quadrature methods introduced in Chapter

2.2 are efficient. As the parameter dimensionality increases, such deterministic ap-

proaches quickly become intractable and thus one may have to utilize Monte-Carlo-

type algorithms to estimate ŷk.

3.6 Stochastic Galerkin

Stochastic Galerkin is also called stochastic finite-element method [93] since it is a

generalization of finite-element method to the multi-dimensional parameter space.

It is an intrusive solver with special choice of basis functions and testing functions.

First, the basis function Ψ(~ξ) is chosen as the generalized polynomial chaos, i.e.,

Ψk(~ξ) = Hk(~ξ). Second, a Galerkin projection is utilized to set up the deterministic

model (3.2). Specifically, the testing functions are identical to the basis functions,

i.e., Φk(~ξ) = Ψk(~ξ) = Hk(~ξ).

Stochastic Galerkin is efficient for engineering problems. However, since the re-

sulting equation is coupled, the efficiency of this technique can quickly degrade as the

parameter dimensionality increases.

3.7 Previous Applications in Circuit and MEMS

Monte Carlo has been utilized in almost all commercial circuit simulators such as

PSpice [5], Cadence Spectre [6], and Synopsys HSPICE [7]. Recent advancements in-

clude Mixture Importance Sampling, Quasi-Monte Carlo and Latin Hypercube sam-

pling [85–87] that help reduce the number of simulation samples.

For low-dimensional problems, stochastic spectral methods are much more efficient

over Monte Carlo, and thus they have become promising techniques in circuit/MEMS

simulation. Ref. [12–17, 94–104] have applied Hermite polynomial-chaos expansion,

stochastic collocation and stochastic Galerkin to simulate linear circuits with Gaus-

sian variations. In order to handle high-dimensional linear problems, Moselhy has
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developed a dominant singular-vector method [13] to accelerate intrusive solvers and

a stochastic model reduction algorithm to accelerate non-intrusive solvers [105].

Only a small number of results have been reported for stochastic nonlinear cir-

cuits and MEMS problems. In [90, 106], stochastic spectral methods were applied

to simulate nonlinear circuits with Gaussian variations. Manfredi [107] extended the

idea of [106] to handle some problems with non-Gaussian variations, but new device

models must be rebuilt according to the given uncertainty specifications and bias con-

ditions. Pulch directly started from the equation (1.3) and applied stochastic Galerkin

to simulate nonlinear RF circuits [108, 109] and multi-rate circuits [110]. The main

limitation of a stochastic-Galerkin-based circuit simulator is its difficulty to solve the

resulting coupled equations. In order to mitigate this issue, some techniques were

developed to decouple the Jacobian matrices resulting from linear [111] and nonlinear

circuit analysis [112] with Gaussian variations. The complexity of such techniques

grows exponentially as the parameter dimensionality d increases (since (p+ 1)d basis

functions were used where p is the highest polynomial degree for each random param-

eter). It is not clear if these techniques can handle non-Gaussian variations. In the

MEMS community, there were a few work applying stochastic collocation to quantify

the uncertainties caused by process variations [113–117].

Fitting and regression techniques have been applied for a long time for the stochas-

tic behavior modeling of nonlinear circuits. The response-surface modeling in [1] uses

monomials as the basis functions and then computes the coefficients of each monomial

by a least-square optimization. Recently, Li [88] has applied compressed sensing [92]

to obtain the sparse solutions for some high-dimensional problems.
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Chapter 4

Stochastic Testing Simulator

This chapter presents a generalized polynomial chaos-based intrusive simulator,

called stochastic testing, for the uncertainty quantification of transistor-level sim-

ulation. This SPICE-like stochastic simulator is a variant of the interpolation-based

stochastic collocation [118, 119]. Our work uses a collocation testing method to set

up a coupled equation such that the Jacobian matrix can be decoupled and thus the

numerical computation can be accelerated. Our simulator differs from previous work

in the following aspects:

1. Different from the non-intrusive stochastic collocation in [118,119], this simula-

tor is an intrusive framework: the resulting coupled equation is solved directly

to obtain the spectral coefficients, without decoupling a-priori.

2. Different from stochastic collocation [54, 118] and stochastic Galerkin [93, 106]

that use all quadrature points, our solver employs only a small portion of them

to set up a deterministic equation. Our algorithm provides extra speedup in

time-domain simulation, since its intrusive nature allows adaptive time stepping.

3. Decoupling is applied inside the Newton’s iterations. Therefore, the computa-

tional complexity depends linearly on the total number of basis functions.

The above features make the proposed simulator hundreds to thousands of times

faster over Monte Carlo, and tens to hundreds of times faster than stochastic Galerkin

and stochastic collocation.
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4.1 Stochastic Testing Simulator

4.1.1 Basic Idea of Stochastic Testing

First we approximate the exact solution ~x
(

t, ~ξ
)

in stochastic differential algebraic

equation (DAE) (1.3) by x̃(t, ~ξ) with the truncated generalized polynomial chaos

expansion in (2.8). This yields a residual function

Res(x̂(t), ~ξ) =
d~q

(

x̃(t, ~ξ), ~ξ
)

dt
+ ~f

(

x̂(t, ~ξ), ~u(t), ~ξ
)

.
(4.1)

Now the unknown vector reads

x̂ (t) = [x̂1 (t) ; · · · ; x̂K (t)] ∈ R
N , with N = nK. (4.2)

We set the highest total degree of the polynomial basis functions as p, and thus K is

a polynomial function of p and d, and it is decided by (2.7).

In order to compute x̂ (t), stochastic testing starts from (4.1) and sets up a

larger-size determined equation by the projection step (3.1). Recalling that stochas-

tic Galerkin chooses testing functions as the basis functions and thus the resulting

equation in (3.2) has larger-size coupled Jacobian matrices. In stochastic testing, we

apply collocation testing by choosing the testing functions as

Φk(~ξ) = δ(~ξ − ~ξk) for k = 1, · · · , K. (4.3)

This choice of testing function avoids the multi-dimensional integral computation

required in Galerkin testing. As a result, we obtain the following deterministic DAE

dQ (x̂ (t))

dt
+ F (x̂ (t), ~u(t)) = 0 (4.4)
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with

Q (x̂ (t)) =











~q
(

x̃(t, ~ξ1), ~ξ1
)

...

~q
(

x̃(t, ~ξK), ~ξK
)











, F (x̂ (t), ~u(t)) =











~f
(

x̃(t, ~ξ1), ~u(t), ~ξ1
)

...

~f
(

x̃(t, ~ξK), ~u(t), ~ξK
)











. (4.5)

The collocation testing used here is the same with that used in collocation-based

integral equation solvers [120]. However, in stochastic computation, “stochastic collo-

cation" generally means a different sampling-based method (c.f. Section 4.2.2) that

uses more sampling points than basis functions. Therefore, we name our proposed

method as “stochastic testing".

There remain two important issues, and how to address them distinguishes our

stochastic testing solver with the non-intrusive stochastic solvers in [118, 119]. The

first issue is how to solve the resulting coupled DAE. Our solver directly solves (4.4)

by an intrusive solver. As a result, the generalized polynomial chaos coefficients can

be directly computed with adaptive time stepping [121]. The second issue is how

to select the testing samples. Stochastic testing selects K testing points from some

candidate nodes, whereas (p+ 1)d≫K nodes are used in [118] to make the Jacobian

invertible.

4.1.2 Intrusive Decoupled Solver

Instead of simulating each block of (4.4) separately, stochastic testing passes the whole

coupled DAE into a specialized transient solver to directly compute the generalized

polynomial chaos coefficients. Special matrix structures are exploited inside Newton’s

iterations to obtain simulation speedup. As a demonstration, we consider backward-

Euler integration. Other types of numerical integration schemes (e.g., Trapezoidal or

Gear-2 method) are implemented in a similar way inside stochastic testing simulator.

Let x̂k=x̂ (tk) and ~uk=~u (tk). In the transient solver, DAE (4.4) is discretized,
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leading to an algebraic equation

R(x̂k) = αk(Q(x̂k)−Q(x̂k−1)) + F (x̂k, ~uk) = 0

with αk=
1

tk−tk−1
. The time step size is adaptively selected according to the local

truncation error (LTE) [5, 121]. Starting from an initial guess x̂0
k, x̂k is computed

using Newton’s iterations

solve J
(

x̂j
k

)

∆x̂j
k = −R

(

x̂j
k

)

, then update x̂j+1
k = x̂j

k +∆x̂j
k, (4.6)

until convergence. Here J (x̂j
k) is the Jacobian matrix of R(x̂j

k). Fig. 4-1 shows the

structure of J (x̂j
k) from a CMOS low-noise amplifier (LNA) with n=14, d=p=3 and

K=20. Clearly, all off-diagonal blocks are filled with non-zero submatrices. As a

result, directly using a matrix solver to compute ∆x̂j
k can be inefficient. If a di-

rect matrix solver is employed, the linear system solution costs O(N3) = O(K3n3);

when an iterative method is applied, the cost is m̂O(K2n) where m̂ is the number of

iterations.

The coupled linear equation in (4.6) is instead solved in a decoupled manner. We

rewrite the Jacobian matrix in (4.6) as

J (x̂j
k) = J̃ (x̂j

k)Wn, with Wn = V ⊗ In (4.7)

where In is the identity matrix of size n × n, ⊗ denotes the Kronecker product

operation, and V ∈ R
K×K is a Vandermonde-like matrix dependent only on the

testing points and basis functions with the (j, k) element as

V(j, k) = Hk(~ξ
j). (4.8)

The inverse of Wn is

W−1
n = V−1 ⊗ In (4.9)
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Figure 4-1: Structure of the Jacobian matrix in stochastic testing-based simulator,
with d = p = 3 and K = 20.

which can be easily computed because: 1) V is of small size; and 2) fast inverse

algorithms exist for Vandermonde-like matrices [122]. Both V and V−1 are calculated

only once and then reused for all time points.

Matrix J̃ (x̂j
k) has a block-diagonal structure:

J̃ (x̂j
k) =











J(x̂j
k,
~ξ1)

. . .

J(x̂j
k,
~ξK)











. (4.10)

Let x̂k,jn2
denotes the n2-th generalized polynomial chaos coefficient vector in x̂j

k, then

J(x̂j
k,
~ξ) = αk

∂~q(~x, ~ξ)

∂~x
+
∂ ~f(~x, ~uk, ~ξ)

∂~x

∣

∣

∣

∣

∣

~x=
K
∑

n2=1
x̂
k,j
n2

Hn2 (
~ξ)

. (4.11)

Finally, the linear equation in (4.6) is solved as follows:

1. Solve J̃ (x̂j
k)∆z = −R(x̂j

k) for ∆z. Due to the block-diagonal structure, this

step costs only KO (n3) for a direct solver or m̂KO(n) for an iterative solver.
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2. Calculate the sparse matrix-vector product ∆x̂j
k = W−1

n ∆z. Since the closed

form of W−1
n is ready, the matrix-vector multiplication costs only O(nK).

The computational cost of stochastic testing solver now has only a linear dependence

on K, as contrasted with the cubic or quadratic dependence when directly solving

the coupled linear equation.

The stochastic testing solver can be easily implemented inside a commercial circuit

simulator without any modifications to device models. Inside each Newton’s iteration,

one can convert x̂j
k to a deterministic state vector and then evaluate the corresponding

Jacobian and function values for a testing sampling. Repeating this procedure for

all samples, J̃ (x̂j
k) and R(x̂j

k) can be obtained. After that, all blocks are solved

independently to obtain ∆z and then ∆x̂j
k. If the Newton’s iterations get converged,

the local truncation error (LTE) is checked by an existing estimator [5, 121]. The

solution is accepted and stochastic testing proceeds to the next time point if the LTE

is below a threshold; otherwise, the time step size is reduced and x̂k is recomputed.

Since the function/Jacobian evaluation and linear system solutions are well decoupled,

stochastic testing can be easily implemented on a parallel computing platform.

4.1.3 Testing Sample Selection

The testing samples {~ξj}Kj=1 are selected by two steps. First, (p + 1)d candidate

samples are generated by a Gaussian-quadrature tensor product rule. Next, only K

samples (with K ≪ p+1)d) are selected from the candidate samples and used as the

final testing samples. Note that (p+ 1)d samples are used in [118], which are exactly

the candidate samples of stochastic testing.

Candidate Sample Generation

In this work, we set n̂ = p + 1 (p is highest total polynomial order), and use Gauss

quadrature rule described in Chapter 2.2.1 to construct quadrature points for each

random parameter ξk. Then, we apply a tensor product or sparse grid rule to generate

multirate quadrature points as the candidate samples. For instance, we apply the
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tensor-product rule in (2.14) to construct N̂ = n̂d quadrature samples in the d-

dimensional parameter space Ω. Define an index matrix I ∈ Z
d×N̂ , the j-th column

of which is decided according to the constraint

1 +
d

∑

k=1

(n̂− 1)k−1 (I(k, j)− 1) = j. (4.12)

Then the j-th quadrature point in Ω is

~ξj = [ξ
I(1,j)
1 , · · · , ξI(d,j)l ], (4.13)

where 1 ≤ I (k, j) ≤ n̂ indicates the index of the quadrature point in Ωk. The

corresponding weight of ~ξj can also be rewritten as

wj =
d
∏

k=1

w
I(k,j)
k . (4.14)

Selecting Testing Samples

In the second step, only K testing samples are selected from the (p + 1)d candidate

samples based on two criteria:

1. We prefer those quadrature points that are statistically “important", i.e., those

samples with large weight values;

2. The matrix V defined in (4.8) should be full-rank and well conditioned.

The Matlab pseudo codes of selecting the final testing samples are provided in Alg. 1.

In Line 7, β > 0 is a threshold scalar. The input vector in Line 2 is ~w=[|w1|, |w2|, · · · , |wN̂ |],
and the vector-valued function ~H(ξ) ∈ R

K×1 is

~H(~ξ) = [H1(~ξ), H2(~ξ), · · · , HK(~ξ)]
T . (4.15)

The basic idea of Alg. 1 is as follows. All candidate samples and their weights

are reordered such that |wj| ≥ |wj+1|, and the first sample is selected as the first
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Algorithm 1 Testing Node Selection.

1: Construct N̂ d-dimensional Gaussian quadrature samples and weights;
2: [~w, ind]=sort(~w, ‘descend’); % reorder the weights

3: V = ~H
(

~ξk

)

/|| ~H
(

~ξk

)

||, with k = ind(1);

4: ~ξ1 = ~ξk, m = 1; % the 1st testing sample
5: for j = 2, · · · , N̂ do

6: k = ind(j), ~v = ~H
(

~ξk

)

− Vm

(

VT
m
~H
(

~ξk

))

;

7: if ||~v||/|| ~H
(

~ξk

)

|| > β

8: Vm+1 = [Vm;~v/||~v||], m = m+ 1 ;

9: ~ξm = ~ξk; % select as a new testing sample.
10: if m ≥ K, break, end;
11: end if
12: end for

testing sample ~ξ1. Then, we consider the remaining candidate samples from the

“most important" to the “least important". Assuming that m − 1 testing samples

have been selected, this defines a vector space

Vm−1 = span
{

~H(~ξ1), · · · , ~H(~ξm−1)
}

. (4.16)

The next “most important" candidate ~ξk is selected as a new testing sample if and

only if ~H(~ξk) has a large enough component orthogonal to Vm−1. This means that

we can add one dimension to Vm−1 by choosing ~ξk as a new testing point, leading

to a new vector space Vm. This procedure continues until the dimensionality of Vm

becomes K.

When the parameter dimensionality d is large, generating and saving the candi-

date samples and index matrix I become expensive. A solution is to select the testing

samples without explicitly generating the candidate samples or I. First, we generate

weight wj’s and the corresponding index j’s according to (4.14) and (4.12), respec-

tively. In the k-th step, we find the k-th largest weight wj and its corresponding index

j. According to (4.12), the j-th column of the index matrix I can be calculated, and

then we can construct candidate sample ~ξj. Finally ~ξj is selected as a new testing

sample ~ξm if ~H(~ξj) has a large enough component orthogonal to Vm−1, otherwise it
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is omitted and not stored.

There exist other possible ways to select the testing samples. A recent progress

is to generate the samples by Leja sequences, a greedy approximation to Fekete

nodes [123]. How to select the optimal testing samples is still an open problem.

4.2 Comparison with Other Stochastic Solvers

Now we briefly extends the generalized polynomial chaos-based stochastic Galerkin

and stochastic collocation to nonlinear circuit problems, and then we compare them

with our proposed stochastic testing simulator.

4.2.1 Comparison with Stochastic Galerkin

Stochastic Galerkin for Nonlinear Circuits. Starting from the residual function

(4.1), stochastic Galerkin sets up a deterministic DAE in the form (4.4) by Galerkin

testing:
〈

Res
(

x̂(t), ~ξ
)

, Hk

(

~ξ
)〉

Ω,ρ(~ξ)
= 0, for k = 1, · · · , K. (4.17)

Now Q(x̂(t)) and F (x̂(t), ~u(t)) in (4.4) have the blocked form

Q (x̂(t)) =











Q1 (x̂(t))
...

QK (x̂(t))











, F (x̂(t), ~u(t)) =











F1 (x̂(t), ~u(t))
...

FK (x̂(t), ~u(t))











, (4.18)

with the n1-th block defined by

Qn1 (x̂ (t)) =
〈

~q
(

x̂(t, ~ξ), ~ξ
)

, Hn1(
~ξ)
〉

Ω,ρ(~ξ)
,

Fn1 (x̂ (t), ~u(t)) =
〈

~f
(

x̂(t, ~ξ), ~u(t), ~ξ
)

, Hn1(
~ξ)
〉

Ω,ρ(~ξ)
.

(4.19)

In order to obtain the above inner product, one can use deterministic numerical

quadrature or Monte Carlo integration [124].

Comparison with Our Simulator. Both techniques are intrusive solvers, and
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the coupled DAEs from stochastic testing and stochastic Galerkin have the same

size. However, stochastic Galerkin is more expensive compared to stochastic testing.

First, stochastic Galerkin must evaluate the multivariate stochastic integrals in (4.19),

hence functions ~q and ~f must be evaluated at many quadrature or sampling points.

This step is not cheap because evaluating a semiconductor device model (e.g., BISM3

model) at each sample involves running tens of thousands of lines of codes. Second,

the linear system solving inside the Newton’s iteration of stochastic Galerkin is much

more expensive. Assume that Gaussian quadrature is applied to calculate the inner

products in (4.19), then the Jacobian J (x̂j
k) has the following structure

J
(

x̂j
k

)

=











J1,1

(

x̂j
k

)

· · · J1,K

(

x̂j
k

)

...
. . .

...

JK,1

(

x̂j
k

)

· · · JK,K

(

x̂j
k

)











, (4.20)

and the submatrix Jn1,n2

(

x̂j
k

)

∈ R
n×n is calculated by

Jn1,n2

(

x̂j
k

)

=
N̂
∑

q=1

wqHn1

(

~ξq
)

Hn2

(

~ξq
)

J
(

x̂j
k,
~ξq
)

.

Here ~ξq is the q-th Gaussian quadrature sample and wq the corresponding weight,

J
(

x̂j
k,
~ξq
)

is calculated according to the definition in (4.11). The Jacobian in stochas-

tic Galerkin cannot be decoupled. Therefore, solving the resulting DAE of stochastic

Galerkin requires O(N3) = O(K3n3) at each time point if a direct solver is used

(or m̂O(K2n) if m̂ iterations are used in an iterative solver), much more expensive

compared to stochastic testing.

4.2.2 Comparison with Stochastic Collocation Method

Stochastic Collocation for Nonlinear Circuits. Obeying the procedures in

Chapter 3.5, stochastic collocation starts from the original stochastic circuit equa-

tion (1.3) without using generalized polynomial chaos approximation a-priori. With

N̂ quadrature points ~ξ1, · · · , ~ξN̂ , stochastic collocation solves (1.3) at each sample to
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obtain a deterministic solution ~x(t, ~ξk). The generalized polynomial chaos coefficients

are then computed using a post-processing such as projection

x̂j(t) =
〈

~x(t, ~ξ), Hj(~ξ)
〉

Ω,ρ(~ξ)
≈

N̂
∑

k=1

wkHj(~ξ
k)~x(t, ~ξk). (4.21)

Comparison with Our Simulator. Similar to stochastic testing, the cost of

stochastic collocation has a linear dependence on the number of samples used. How-

ever, stochastic collocation uses more samples than stochastic testing. Furthermore,

stochastic collocation is not as efficient as stochastic testing in time-domain simu-

lation. In order to reconstruct the generalized polynomial chaos coefficients of the

time-domain state vector ~x(t, ~ξ), stochastic collocation must use the same time grid

points to simulate all deterministic circuit equations. Since it is difficult to preselect

an adaptive time grid, a small fixed step size is normally used, leading to excessive

computational cost. In contrast, stochastic testing can use any standard adaptive

step stepping to accelerate the time-domain simulation since it directly computes the

generalized polynomial chaos coefficients. It seems that stochastic collocation can

use adaptive time stepping to simulate each deterministic equation, and then uses in-

terpolation at the time points where solutions are missing. Unfortunately, the errors

caused by such interpolations are much larger than the threshold inside Newton’s iter-

ations, causing inaccurate computation of higher-order generalized polynomial chaos

coefficients. However, stochastic collocation indeed can use adaptive time stepping if

one is not interested in the statistical information of the time-domain waveforms.

4.2.3 Summary and Comparison

All stochastic spectral methods are summarized in Table 4.1. Stochastic testing allows

both adaptive time stepping and decoupled simulation, therefore, it is more efficient

over stochastic collocation and stochastic Galerkin for circuit simulation.
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Table 4.1: Comparison of different spectral methods.
Method Type Decoupled? Adapt. step size?

stochastic collocation nonintrusive
√ ×

stochastic Galerkin intrusive × √
stochastic testing intrusive

√ √

Vin

Vdd

Rd

Rs

Vout

Figure 4-2: Schematic of the common-source amplifier.

4.3 Numerical Results

This section presents the simulation results of some analog, RF and digital integrated

circuits. Our stochastic testing algorithm is implemented in a MATLAB prototype

simulator and integrated with several semiconductor device models for algorithm ver-

ification. In this work, Level-3 MOSFET model and Ebers-Moll BJT model are used

for transistor evaluation [125]. The TSMC 0.25µm CMOS model card [126] is used

to describe the device parameters of all MOSFETs. For simplicity, in this section, we

use ST, SC, SG and MC to represent stochastic testing, stochastic colloca-

tion, stochastic Galerkin and Monte Carlo, respectively. In SG and ST, step

sizes are selected adaptively according to the local truncation error (LTE) [121] for

time-domain simulation. In contrast, uniform step sizes are used for both MC and SC

since we need to obtain the statistical information of time-domain solutions. In our

experiments, all candidate samples of stochastic testing are generated by Gaussian

quadrature and tensor-product rules. The cost of generating the candidate samples
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and selecting testing samples is several milliseconds, which is negligible. For all circuit

examples, SC and SG use the samples from a tensor-product rule. The sparse-grid

and tensor-product SC methods are compared with ST in detail in Section 4.3.6.
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Figure 4-3: Error bars showing the mean and s.t.d values from our stochastic testing
method (blue) and Monte Carlo method (red) of I(Vdd).

4.3.1 Illustrative Example: Common-Source (CS) Amplifier

The common-source (CS) amplifier in Fig. 4-2 is used to compare comprehensively our

stochastic testing-based simulator with MC and other stochastic spectral methods.

This amplifier has 4 random parameters: 1) VT (threshold voltage when Vbs = 0)

has a normal distribution; 2) temperate T has a shifted and scaled Beta distribu-

tion, which influences Vth; 3) Rs and Rd have Gamma and uniform distributions,

respectively.

Stochastic Testing versus Monte Carlo

Stochastic testing method is first compared with MC in DC sweep. By sweeping the

input voltage from 0 V up to 3 V with a step size of 0.2 V, we estimate the supply

currents and DC power dissipation. In MC, 105 sampling points are used. In our
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(a) ST method
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(b) Monte Carlo

Figure 4-4: Histograms showing the distributions of the power dissipation at Vin =
1.4V, obtained by stochastic testing method (left) and Monte Carlo (right).

stochastic testing simulator, using an order-3 truncated generalized polynomial chaos

expansion (with 35 generalized polynomial chaos basis functions, and 35 testing sam-

ples selected from 256 candidate samples) achieves the same level of accuracy. The

error bars in Fig. 4-3 show that the mean and s.t.d values from both methods are

indistinguishable. The histograms in Fig. 4-4 plots the distributions of the power

dissipation at Vin = 1.4V. Again, the results obtained by stochastic testing is consis-

tent with MC. The expected value at 1.4V is 0.928 mW from both methods, and the

s.t.d. value is 22.07 µW from both approaches. Apparently, the variation of power

dissipation is not a Gaussian distribution due to the presence of circuit nonlinearity

and non-Gaussian random parameters.

CPU times: For this DC sweep, MC costs about 2.6 hours, whereas our stochas-

tic testing simulator only costs 5.4 seconds. Therefore, a 1700× speedup is achieved

by using our stochastic testing simulator.

Stochastic Testing versus SC and SG in DC Analysis

Next, stochastic testing method is compared with SG and SC. Specifically, we set

Vin = 1.6V and compute the generalized polynomial chaos coefficients of all state

variables with the total generalized polynomial chaos order p increasing from 1 to 6.

We use the results from p = 6 as the “exact solution" and plot the L2 norm of the
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Figure 4-5: Absolute errors (measured by L2 norm) of the generalized polynomial
chaos coefficients for the DC analysis of the CS amplifier, with Vin = 1.6V. Left:
absolute errors versus generalized polynomial chaos order p. Right: absolute errors
versus CPU times.

Table 4.2: Computational cost of the DC analysis for CS amplifier.
gPC order (p) 1 2 3 4 5 6

ST
time (s) 0.16 0.22 0.29 0.51 0.78 1.37

# samples 5 15 35 70 126 210

SC
time (s) 0.23 0.33 1.09 2.89 6.18 11.742

# samples 16 81 256 625 1296 2401

SG
time (s) 0.25 0.38 5.33 31.7 304 1283

# samples 16 81 256 625 1296 2401

absolute errors of the computed generalized polynomial chaos coefficients versus p

and CPU times, respectively. The left part of Fig. 4-5 shows that as p increases, ST,

SC and SG all converge very fast. Although ST has a slightly lower convergence rate,

its error still rapidly reduces to below 10−4 when p = 3. The right part of Fig. 4-5

shows that ST costs the least CPU time to achieve the same level of accuracy with

SC and SG, due to the decoupled Newton’s iterations and fewer samples used in ST.

CPU times: The computational costs of different solvers are summarized in

Table 4.2. The speedup of ST becomes more significant as the total generalized

polynomial chaos order p increases. We remark that the speedup factor will be smaller

if SC uses sparse grids, as will be discussed in Section 4.3.6.
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Figure 4-6: Transient waveform of the output of the CS amplifier.

Stochastic Testing versus SC and SG in Transient Simulation

Table 4.3: Computational cost of transient simulation for CS amplifier.
Methods ST SG SC

CPU times 41 s > 1 h 1180 s
# samples 35 256 256

speedup of ST 1 > 88 29

Finally, ST is compared with SG and SC in transient simulation. It is well known

that the SG method provides an optimal solution in terms of accuracy [4, 40, 41],

therefore, the solution from SG is used as the reference for accuracy comparison. The

total generalized polynomial chaos order is set as p = 3 (with K = 35 testing samples

selected from 256 candidate samples), and the Gear-2 integration scheme [121] is
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Figure 4-7: Schematic of the LNA.

used for all spectral methods. In SC, a uniform step size of 10µs is used, which is

the largest step size that does not cause simulation failures. The input is kept as

Vin = 1 V for 0.2 ms and then added with a small-signal square wave (with 0.2V

amplitude and 1 kHz frequency) as the AC component. The transient waveforms of

Vout are plotted in Fig. 4-6. The mean value and standard deviation from ST are

almost indistinguishable with those from SG.

It is interesting that the result from ST is more accurate than that from SC in

this transient simulation example. This is because of the employment of LTE-based

step size control [121]. With a LTE-based time stepping [121], the truncation errors

caused by numerical integration can be well controlled in ST and SG. In contrast,

SC cannot adaptively select the time step sizes according to LTEs, leading to larger

integration errors.

CPU times: The computational costs of different solvers are summarized in

Table 4.3. It is noted that SC uses about 7× of samples of ST, but the speedup

factor of ST is 29. This is because the adaptive time stepping in ST causes an extra

speedup factor of about 4. MC is prohibitively expensive for transient simulation and

thus not compared here.
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Table 4.4: Computational cost of the DC analysis for LNA.
gPC order (p) 1 2 3 4 5 6

ST
time (s) 0.24 0.33 0.42 0.90 1.34 2.01

# samples 4 10 20 35 56 84

SC
time (s) 0.26 0.59 1.20 2.28 4.10 6.30

# samples 8 27 64 125 216 343

SG
time (s) 0.58 2.00 6.46 24.9 87.2 286

# samples 8 27 64 125 216 343
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Figure 4-8: Absolute errors (measured by L2 norm) of the generalized polynomial
chaos coefficients for the DC analysis of LNA. Left: absolute errors versus generalized
polynomial chaos order p. Right: absolute errors versus CPU times.

4.3.2 Low-Noise Amplifier (LNA)

Now we consider a practical low-noise amplifier (LNA) shown in Fig 4-7. This LNA

has 3 random parameters in total: resistor R3 is a Gamma-type variable; R2 has a

uniform distribution; the gate width of M1 has a uniform distribution.

DC Analysis: We first run DC analysis by ST, SC and SG with p increasing

from 1 to 6, and plot the errors of the generalized polynomial chaos coefficients of the

state vector versus p and CPU times in Fig. 4-8. For this LNA, ST has almost the

same accuracy with SC and SG, and it requires the smallest amount of CPU time.

The cost of the DC analysis is summarized in Table 4.4.

Transient Analysis: An input signal Vin = 0.5sin(2πft) with f = 108 Hz is

added to this LNA. We are interested in the uncertainties of the transient waveform

at the output. Setting p = 3, our ST method uses 20 generalized polynomial chaos

basis functions (with 20 testing samples selected from 64 candidate samples) to obtain
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Figure 4-9: Transient simulation results of the LNA. Upper part: expectation of the
output voltage; bottom part: standard deviation of the output voltage.
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Figure 4-10: Schematic of the CMOS 6-T SRAM.

the waveforms of the first 4 cycles. The result from ST is indistinguishable with that

from SG, as shown in Fig. 4-9. ST consumes only 56 seconds for this LNA. Meanwhile,

SG costs 26 minutes, which is 28× slower compared to ST.

4.3.3 6-T SRAM Cell

The 6-T SRAM cell in Fig. 4-10 is studied to show the application of ST in digital

cell analysis. When the write line has a high voltage (logic 1), the information of the

bit line can be written into the cell and stored on transistors M1 − M4. The 1-bit
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Figure 4-11: Uncertainties of the SRAM cell. (a) and (b) shows the expectation and
standard deviation of Vout; (c) and (d) shows the waveforms of the write line and bit
line, respectively.

information is represented by the voltage of node Q. When the write line has a low

voltage (logic 0), M5 and M6 turn off. In this case, M1 −M4 are disconnected with

the bit line, and they form a latch to store and hold the state of node Q. Here Vdd is

set as 1 V, while the high voltages of the write and bit lines are both set as 2 V.

Now we assume that due to mismatch, the gate widths of M1 − M4 have some

variations which can be expressed as Gaussian variables. Here we study the influence

of device variations on the transient waveforms, which can be further used for power

and timing analysis. Note that in this paper we do not consider the rare failure events

of SRAM cells [85]. In order to quantify the uncertainties of the voltage waveform
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Figure 4-12: Schematic of the BJT feedback amplifier.

at sample Q, our ST method with p = 3 and K = 35 (with 35 testing samples

selected from 256 candidate samples) is applied to perform transient simulation under

a given input waveforms. Fig. 4-11 shows the waveforms of write and bit lines and

the corresponding uncertainties during the time interval [0, 1]µs.

CPU times: Our ST method costs 6 minutes to obtain the result. SG generates

the same results at the cost of several hours. Simulating this circuit with SC or MC

is prohibitively expensive, as a very small uniform step size must be used due to the

presence of sharp state transitions.

4.3.4 BJT Feedback Amplifier

In order to show the application of our ST method in AC analysis and in BJT-type

circuits, we consider the feedback amplifier in Fig. 4-12. In this circuit, R1 and

R2 have Gamma-type uncertainties. The temperature is a Gaussian variable which

significantly influences the performances of BJTs and diodes. Therefore, the transfer

function from Vin to Vout is uncertain.

Using p = 3 and K = 20 (with 20 testing samples selected from 64 candidate

samples), our ST simulator achieves the similar level of accuracy of a MC simulation

using 105 samples. The error bars in Fig. 4-13 show that the results from both

methods are indistinguishable. In ST, the real and imaginary parts of the transfer
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Figure 4-13: Uncertainties of the transfer function of the BJT amplifier.

functions are both obtained as truncated generalized polynomial chaos expansions.

Therefore, the signal gain at each frequency point can be easily calculated with a

simple polynomial evaluation. Fig. 4-14 shows the calculated PDF of the small-signal

gain at f = 8697.49 Hz using both ST and MC. The PDF curves from both methods

are indistinguishable.

CPU times: The simulation time of ST and Monte Carlo are 3.6 seconds and

over 2000 seconds, respectively.

4.3.5 BJT Double-Balanced Mixer

As the final circuit example, we consider the time-domain simulation of RF circuits

excited by multi-rate signals, by studying the double-balanced mixer in Fig. 4-15.
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Figure 4-14: Simulated probability density functions of the signal gain.

Transistors Q1 and Q2 accept an input voltage of frequency f1, and Q3 ∼ Q6 accept

the second input of frequency f2. The output vout = Vout1−Vout2 will have components

at two frequencies: one at |f1 − f2| and the other at f1 + f2. Now we assume that R1

and R2 are both Gaussian-type random variables, and we measure the uncertainties

of the output voltage. In our simulation, we set Vin1 = 0.01sin(2πf1t) with f1 = 4

MHz and Vin2 = 0.01sin(2πf2t) with f2 = 100 kHz. We set p = 3 and K = 10 (with 10

testing samples selected from 16 candidate samples), and then use our ST simulator

to run a transient simulation from t = 0 to t = 30µs. The expectation and standard

deviation of Vout1 − Vout2 are plotted in Fig. 4-16.

CPU times: The cost of our ST method is 21 minutes, whereas simulating this

mixer by SG, SC or MC on the same MATLAB platform is prohibitively expensive

due to the presence of multi-rate signals and the large problem size.

4.3.6 Discussion: Speedup Factor of ST over SC

Finally we comprehensively compare the costs of ST and SC. Two kinds of SC meth-

ods are considered according to the sampling samples used in the solvers [43]: SC

using tensor product (denoted as SC-TP) and SC using sparse grids (denoted as SC-

SP). SC-TP uses (p + 1)d samples to reconstruct the generalized polynomial chaos
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Figure 4-15: Schematic of the BJT double-balanced mixer.

coefficients, and the work in [118] belongs to this class. For SC-SP, a level-p+1 sparse

grid must be used to obtain the p-th-order generalized polynomial chaos coefficients

in (4.21). We use the Fejèr nested sparse grid in [42], and according to [127] the total

number of samples in SC-SP is estimated as

NSC−SP =

p
∑

i=0

2i
(d− 1 + i)!

(d− 1)!i!
(4.22)

DC Analysis: In DC analysis, since both ST and SC use decoupled solvers and

their costs linearly depend on the number of samples, the speedup factor of ST versus

SC is

νDC ≈ NSC/K (4.23)

where NSC and K are the the numbers of samples used by SC and ST, respectively.

Fig. 4-17 plots the values of NSC/K for both SC-TP and SC-SP, which is also the

speedup factor of ST over SC in DC analysis. Since ST uses the smallest number

of samples, it is more efficient over SC-TP and SC-SP. When low-order generalized

polynomial chaos expansions are used (p ≤ 3), the speedup factor over SC-SP is below

10. The speedup factor can be above 10 if p ≥ 4, and it gets larger as p increases. In
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Figure 4-16: Uncertainties of Vout=Vout1 − Vout2 of the double-balanced mixer.
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versus SC-TP, (b) ST versus SC-SP. This is also the speedup factor in DC analysis.

high-dimensional cases (d ≫ 1), the speedup factor of ST over SC-SP only depends

on p. It is the similar case if Smolyak sparse grids are used in SC [54]. For example,

compared with the sparse-grid SC in [54], our ST has a speedup factor of 2p if d≫ 1.

Transient Simulation: The speedup factor of ST over SC in a transient simu-

lation can be estimated as

νTrans ≈ (NSC/K)× κ, with κ > 1, (4.24)

which is larger than νDC. The first part is the same as in DC analysis. The second
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Figure 4-18: The schematic of a CMOS folded-cascode operational amplifier.

part κ represents the speedup caused by adaptive time stepping in our intrusive ST

simulator, which is case dependent. For weakly nonlinear analog circuits (e.g., the

SC amplifier in Section 4.3.1), κ can be below 10. For digital cells (e.g., the SRAM

cell in Section 4.3.3) and multi-rate RF circuits (e.g., the double-balanced mixer

in Section 4.3.5), SC-based transient simulation can be prohibitively expensive due

to the inefficiency of using a small uniform time step size. In this case, κ can be

significantly large.

4.4 Limitations and Possible Solutions

Our proposed simulator has some theoretical limitations.

4.4.1 Discontinuous Solutions

First, the proposed algorithm is only applicable when the solution smoothly depends

on the random parameters. This is true for many analog/RF circuits and MEMS

problems, but such an assumption may fail for digital circuits or when process vari-

ations become too large. For instance, the operational amplifier in Fig. 4-18 is very

sensitive to process variations. The static output voltage changes smoothly when the
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Figure 4-19: Monte-Carlo simulation results of a CMOS operational amplifier.

process variations are very small. However, when we increase the process variations

to some extent, the output voltage may suddenly jump from one range to another and

the whole circuit does not work in the linear range. Fig. 4-19 shows the histogram of

the DC output voltage simulated by Monte Carlo with 2000 samples. Clearly, some

output voltages are close to 0, and some approach the supply voltage (4.5 V), imply-

ing that the state variables of this circuit are not changing smoothly under process

variations.

In order to solve this problem, one possible solution is to first partition the param-

eter space and then to construct a local approximation for each sub-domain. However,

it is not clear how to partition the parameter space in an efficient and accurate way

(especially when the parameter space has a high dimension).

4.4.2 Long-Term Integration

The proposed stochastic testing simulator may not work very well if one needs to run

a long-term transient simulation. This is because that the variances of waveforms

increase as time evolves (as shown in Fig. 4-20, where the waveforms corresponding
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Figure 4-20: The variations of circuit waveforms increase in transient simulation.

to different random parameter realizations are plotted).

This problem may be solved by directly computing the periodic steady states when

simulating communication circuits or power electronic circuits (as will be presented

in Chapter 5). However, long-term simulation becomes a challenging task when one

is interested in the transient behavior instead of a steady state. One possible solution

is to develop some novel time-dependent stochastic basis functions to approximate

the solutions more accurately.
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Chapter 5

Stochastic-Testing Periodic

Steady-State Solver

Designers are interested in periodic steady-state analysis when designing analog/RF

circuits or power electronic systems [128–134]. Such circuits include both forced (e.g.,

amplifiers, mixers, power converters) and autonomous cases (also called unforced cir-

cuits such as oscillators). Popular periodic steady-state simulation algorithms include

shooting Newton, finite difference, harmonic balance, and their variants.

This chapter focuses on the development of uncertainty quantification algorithms

for computing the stochastic periodic steady-state solutions caused by process vari-

ations. We propose a novel stochastic simulator by combining stochastic testing

method with shooting Newton method. Our algorithm can be applied to simulate

both forced and autonomous circuits. Extending our ideas to other types of periodic

steady-state solvers is straightforward.

The numerical results of our simulator on some analog/RF circuits show remark-

able speedup over the stochastic Galerkin approach. For many examples with low-

dimensional random parameters, our technique is 2 to 3 orders of magnitude faster

than Monte Carlo.
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5.1 Review of Shooting Newton Method

In order to show the concepts and numerical solvers for deterministic circuits, we

consider a general nonlinear circuit equation without uncertainties:

d~q (~x (t))

dt
+ ~f (~x (t), ~u(t)) = 0. (5.1)

We assume that as time involves a periodic steady-state ~x(t + T ) = ~x(t) is achieved

for any t > t′. Many numerical solvers are capable of computing the periodic steady-

state solutions [128–134]. In the following, we briefly review shooting Newton method

that will be extended to uncertainty analysis. More details on shooting Newton can

be found in [128–131].

5.1.1 Forced Circuits

Under a periodic input ~u(t), there exists a periodic steady-state solution ~x(t) =

~x(t+T ), where the smallest scalar T > 0 is the period known from the input. Shooting

Newton method computes y = ~x(0) by solving the Boundary Value Problem (BVP)

~ψ(y) = ~φ(y, 0, T )− y = 0. (5.2)

Here ~φ(y, t0, t) is the state transition function, which actually is the state vector

~x(t + t0) evolving from the initial condition ~x(t0) = y. In order to compute y,

Newton’s iterations can be applied.

For a general nonlinear dynamic system, there is no analytical form for the state

transition function. However, the value of ~φ(y, t0, t) can be evaluated numerically:

starting from t0 and using y as an initial condition, performing time-domain integra-

tion (i.e., transient simulation) of (5.1) until the time point t, one can obtain the new

state vector ~x(t) which is the value of ~φ(y, t0, t). Obviously, ~φ(y, 0, T ) = ~x(T ) when

y = ~x(0).

78



5.1.2 Oscillator Circuits

For autonomous circuits (i.e., oscillators), ~u(t) = ~u is constant and T is unknown,

thus a phase condition must be added. For example, by fixing the j-th element of

~x(0), one uses the boundary value problem

φ̄ (y, T ) =





~ψ (y, T )

χ (y)



 =





~φ (y, 0, T )− y

yj − λ



 = 0 (5.3)

to compute y = ~x(0) and T . Here yj is the j-th element of y, and λ is a properly

selected scalar constant.

5.2 Proposed Stochastic Periodic Steady-State Solver

Let H={H1(~ξ), · · · , HK(~ξ)} represent the generalized polynomial chaos basis func-

tions with total polynomial order bounded by p, and ŵ = [ŵ1; · · · ; ŵK ] denote the

collection of the corresponding coefficients, we define an operator:

M(H, ŵ, ~ξ) := w̃(~ξ) =
K
∑

k=1

ŵkHk(~ξ)

which converts vector ŵ to a corresponding generalized polynomial chaos approxi-

mation w̃(~ξ). Given a set of testing samples S = {~ξ1, · · · , ~ξK}, V ∈ R
K×K denotes

the Vandermonde-like matrix in (4.8). We still use Wn = V ⊗ In, where ⊗ is the

Kronecker product operator and In is an identity matrix of size n.

5.2.1 Formulation for Forced Circuits

For a forced circuit, we directly perform uncertainty quantification based on the

coupled deterministic DAE (4.4) formed by our stochastic testing simulator. The

generalized polynomial-chaos approximated solution can also be written as x̃(t, ~ξ) :=

M(H, x̂(t), ~ξ) where x̂(t) = [x̂1(t); · · · ; x̂K(t)] ∈ R
nK collects all generalized polyno-

mial chaos coefficients of ~x(t, ~ξ) (as already defined in Chapter 2).
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The stochastic state vector ~x(t, ~ξ) is periodic for any ~ξ ∈ Ω if and only if x̂(t) is

periodic. Therefore, we have

g(ŷ) = Φ(ŷ, 0, T )− ŷ = 0. (5.4)

In this equation, ŷ = x̂(0), and Φ(ŷ, 0, T ) is the state transition function of (4.4).

Similar to the deterministic case, Φ(ŷ, 0, T ) can be computed by a transient simulation

of (4.4) for one period T with ŷ as the initial condition at t = 0.

5.2.2 Formulation for Autonomous Circuits

For unforced cases, we cannot directly use (4.4) for periodic steady-state analysis

since no periodic steady-state solution exists. This is because that the period T (~ξ)

is parameter dependent. For each realization of ~ξ, ~x(t, ~ξ) is periodic. However, when

we consider the waveform in the whole parameter space, ~x(t, ~ξ) is not periodic.

In order to compute the steady state, we modify (1.3) by scaling the time axis as

done in [134]. Let T0 be the oscillation period for the nominal case, and let a(~ξ) is a

parameter-dependent unknown scaling factor, then we write T (~ξ) as

T (~ξ) = T0a(~ξ) ≈ T0M(H, â, ~ξ)

where â=[â1; · · · ; âK ] ∈ R
K collects the generalized polynomial chaos coefficients of

a(~ξ). Define a new time variable τ such that

t = a(~ξ)τ ≈ M(H, â, ~ξ)τ,

then ~z(τ, ~ξ) = ~x(t, ~ξ) becomes the state vector of the following stochastic differential

algebraic equation

d~q(~z(τ, ~ξ), ~ξ)

dτ
+ a(~ξ)~f(~z(τ, ~ξ), ~u, ~ξ) = 0. (5.5)

Note that ~u(t) = ~u is time-invariant. Replacing ~z(τ, ~ξ) and a(~ξ) in (5.5) with their
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generalized polynomial chaos approximations z̃(τ, ~ξ) and ã(~ξ), respectively, and en-

forcing the resulting residual to zero for any ~ξk ∈ S, we get a deterministic equation

dQ(ẑ(τ))

dτ
+ F (ẑ(τ), â) = 0. (5.6)

Here ẑ(τ)=[ẑ1(τ); · · · ; ẑK(τ)] denotes the generalized polynomial chaos coefficients of

~z(τ, ξ). The nonlinear functions are decided by

Q(ẑ(τ)) = [~q1(ẑ(τ)); · · · ; ~qK(ẑ(τ))] , F (ẑ(τ), â) =
[

~f1(ẑ(τ)); · · · ; ~fK(ẑ(τ))
]

with

~qk(ẑ(τ)) = ~q(z̃(τ, ~ξk), ~ξk), ~fk(ẑ(τ)) = ã(~ξk)~f(z̃(τ, ~ξk), ~u, ~ξ
k).

Let ŷ := [ẑ(0); â] denote that unknown variables that we want to compute, which

includes the generalized polynomial-chaos coefficients for both ~z(0, ~ξ) and a(~ξ). By

enforcing periodicity of the scaled waveform and by fixing the j-th component of

~z(0, ~ξ) at λ, we can set up the following boundary-value problem

g(ŷ) =





Ψ(ẑ(0), â)

χ(ẑ(0))



 =





Φ(ẑ(0), 0, T0, â)− ẑ(0)

χ(ẑ(0))



 = 0. (5.7)

Here the state transition function Φ(ẑ(0), 0, T0, â) for (5.6) depends on â, and the

phase constraint χ(ẑ(0)) = 0 ∈ R
K is

χ(ẑ(0)) =
[

ẑj(0)− λ; ẑj+n(0); · · · ; ẑj+(K−1)n(0)
]

= 0,

with ẑj(0) denotes the j-th component of ẑ(0).
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5.3 Numerical Solvers

5.3.1 Coupled Matrix Solver

In order to solve (5.4) and (5.7), we start from an initial guess ŷ0 and use Newton’s

iteration

solve ∆ŷ = J−1(ŷj)g(ŷj), update ŷj+1 = ŷj −∆ŷ (5.8)

until convergence. The value of function g(ŷ) can be evaluated by running a transient

simulation of (4.4) or (5.6) for one period. The main problem is how to evaluate the

Jacobian J(ŷ) and how to solve the linear system equation in (5.8).

Forced Case. For a forced case, the Jacobian of (5.4) is

Jforced = Mŷ − I, with Mŷ =
∂Φ (ŷ, 0, T )

∂ŷ
. (5.9)

Here Mŷ is the Monodromy matrix of (4.4), which can be obtained from linearizations

along the trajectory starting from x̂(0) = ŷ to x̂(T ). This step is the same as the

deterministic case detailed in [130] and thus skipped here.

Autonomous Case. The Jacobian of (5.7) reads

Josc =





J11 J12

J21 0



 . (5.10)

Submatrix J11 = ∂Ψ(ẑ(0),â)
∂ẑ(0)

can be calculated in the same way of computing Jforced;

J21 =
∂χ(ẑ(0))
∂ẑ(0)

is easy to calculate since χ(ẑ(0)) is linear w.r.t. ẑ(0). Submatrix J12 is

J12 =
∂Ψ(ẑ(0), â)

∂â
=
∂Φ(ẑ(0), 0, T0, â)

∂â
=
∂ẑ(T0)

∂â
. (5.11)

Let τ0 = 0 < τ1 < · · · < τN = T0 be a set of discrete time points on the scaled

time axis τ , and hk = τk − τk−1 be the step size in the transient simulation of (5.6).
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We denote the discretized trajectory by ẑ(k) = ẑ(τk). At τk, we have

Q(ẑ(k))−Q(ẑ(k−1)) =
(

γ1F (ẑ(k), â) + γ2F (ẑ(k−1), â)
)

hk

with γ1 = γ2 = 0.5 for Trapezoidal rule and γ1 = 1, γ2 = 0 for backward Euler.

Taking derivatives on both sides of the above equation yields

∂ẑ(k)

∂â
= (Ek − γ1Akhk)

−1(Ek−1 + γ2Ak−1hk)
∂ẑ(k−1)

∂â
+ (Ek − γ1Akhk)

−1hk(γ1Pk + γ2Pk−1)

(5.12)

with Ek =
∂Q(ẑ(k))

∂ẑ(k)
, Ak =

∂F (ẑ(k),â)

∂ẑ(k)
and Pk =

∂F (ẑ(k),â)

∂â
. Starting from

∂ẑ(0)

∂â
= 0, one

gets J12 =
∂ẑ(N)

∂â
by iterating (5.12).

Similar to the deterministic cases [128–131], the Jacobian is a dense matrix due

to the matrix chain operations. Therefore, solving the linear system in (5.8) costs

O(n3K3) if a direct matrix solver is applied, similar to the cost in [108].

5.3.2 Decoupled Matrix Solver

By properly choosing a transformation matrix P, Equations (5.4) and (5.7) can be

converted to

Pg(ŷ) =











g1(ỹ(~ξ
1))

...

gK(ỹ(~ξ
K))











, with











ỹ(~ξ1)
...

ỹ(~ξK)











= Pŷ. (5.13)

Consequently, the Jacobian in (5.8) can be rewritten as

J(ŷ) = P−1











J1
. . .

JK











P, with Jk =
∂gk(ỹ(~ξ

k))

∂ỹ(~ξk)
. (5.14)

Now we proceed to discuss how to calculate each block in (5.14).
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Forced Case. We set P=Wn and ỹ(~ξk)=x̃(0, ~ξk), then

gk

(

ỹ(~ξk)
)

= ~φ
(

x̃(0, ~ξk), 0, T
)

− x̃(0, ~ξk) = 0 (5.15)

is a deterministic boundary-value problem used to compute the periodic steady state

of (1.3), with ~ξ fixed at ~ξk. In Equation (5.15), x̃(0, ~ξk) ∈ R
n is unknown, x̃(t, ~ξk) =

~φ
(

x̃(0, ~ξk), 0, t
)

is the state transition function, and Jk can be formed using existing

techniques based on numerical time-domain integration such as a backward Euler or

trapezoidal rule [129].

Autonomous Case. Let ỹ(~ξk) = [z̃(0, ~ξk); ã(ξk)], and P = Wn+1Θ where Θ is a

proper permutation matrix, then

gk

(

ỹ(~ξk)
)

=





~φ
(

z̃(0, ~ξk), 0, T0, ã(~ξ
k)
)

− z̃(0, ~ξk)

z̃j(0, ~ξ
k)



 = 0

is a deterministic boundary-value problem used to compute the periodic steady state

of (5.5), with the parameter ~ξ fixed at ~ξk. Here z̃(0, ~ξk) and ã(~ξk) are the unknowns,

and z̃(τ, ~ξk) = ~φ
(

z̃(0, ~ξk), 0, τ, ã(~ξk)
)

is a state transition function dependent on

a(~ξ) = ã(~ξk). The small Jacobian Jk can also be formed by existing numerical tech-

niques [131,134].

Intrusive Solver. We directly compute the generalized polynomial chaos co-

efficients by solving (5.4) or (5.7), with decoupling inside the Newton’s iterations

(5.8). Specifically, inside each iteration, Eq. (4.4) or (5.6) is first integrated for one

period, and the state trajectories are converted to the generalized polynomial chaos

approximations [i.e., x̃(t, ~ξk)’s in forced circuits, or z̃(τ, ~ξk)’s and ã(~ξk)’s in unforced

circuits]. Then Jk’s are formed as done in existing deterministic periodic steady-state

solvers [128–131]. Finally, based on (5.14) each small block is solved independently

to update ŷj. Doing so allows simulating (4.4) or (5.6) with flexible time stepping

controls inside the intrusive transient solver [34], such that all components of x̂(t) [or

ẑ(τ)] are located on the same adaptive time grid. This allows us to directly extract the

statistical information of the time-domain waveforms and other performance metrics
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(e.g., statistical transient power).

Complexity. Since Θ−1=ΘT , W−1
n =V−1⊗In and V−1 can be easily computed [34],

the cost of decoupling in (5.14) is negligible. After decoupling, one can solve each small

linear system equation as done in deterministic periodic steady-state solvers [128–131].

The total cost is O(Kn3) if a direct matrix solver is used. For large-scale circuits, one

can use matrix-free iterative methods [130] at the cost of O(Knβ) where β is normally

1.5∼2. This intrusive decoupled solver could be easily parallelized potentially leading

to further speedup.

5.4 Numerical Results

Our algorithm was implemented in a Matlab circuit simulator. All experiments were

run on a workstation with 3.3GHz 4-GB RAM.

5.4.1 Low-Noise Amplifier (LNA)

The LNA in Fig. 4-7 is used as an example of forced circuits. The ratios of the tran-

sistors are W1/L1=W2/L2=500/0.35 and W3/L3=50/0.35. The design parameters

are: Vdd=1.5 V, R1=50Ω, R2=2 kΩ, C1=10 pF, CL=0.5 pF, L1=20 nH and L3=7

nH. We introduce four random parameters. Temperature T=300 + N (0, 1600) K is

a Gaussian variable influencing transistor threshold voltage; R3=1+U(−0.1, 0.1) kΩ

and L2=1.4 + U(0.6, 0.6) nH have uniform distributions; the threshold voltage under

zero Vbs is VT=0.4238 +N (0, 0.01) V. The input is Vin = 0.1sin(4π × 108t) V.

In our stochastic testing-based periodic steady-state solver, an order-3 generalized

polynomial chaos expansion (with 35 basis functions) are used to represent the state

variables. The computed generalized polynomial chaos coefficients are then used to

extract statistical information at a negligible cost. The means and standard deviations

(s.t.d) of Vout and I(Vdd) (current from Vdd) are plotted in Fig. 5-1. Using standard

MC, 8000 samples are required to achieve the similar level of accuracy (<1% relative

errors for the mean and standard deviation). Fig. 5-2 plots the probability density

functions (PDF) of the total harmonic distortion (THD) and power consumption from
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Figure 5-1: Periodic steady-state waveforms for the LNA. (a) & (b): mean and s.t.d
of Vout; (c) & (d): mean and s.t.d of I(Vdd).

our proposed periodic steady-state solver and MC, respectively. The PDFs from both

methods are graphically indistinguishable. The total cost of our decoupled stochastic

testing solver is 3.4 seconds, which is 42× faster over the coupled stochastic testing

solver, 71× faster over the stochastic Galerkin-based periodic steady-state solver, and

220× faster over MC.

5.4.2 BJT Colpitts Oscillator

The BJT Colpitts oscillator in Fig. 5-3 is a typical example of autonomous circuits.

The design parameters of this circuit are R1=2.2 kΩ, R2=R3=10 kΩ, C2=100 pF,

C3=0.1µF, and α=0.992 for the BJT. The oscillation frequency is mainly determined

by L1, C1 and C2. We assume that L1=150 +N (0, 9) nH and C1=100 + U(−10, 10)

pF are random variables with Gaussian and uniform distributions, respectively.

Setting the generalized polynomial chaos order to 3, the results from our proposed

solver and the stochastic Galerkin-based solver [108] are indistinguishable. Fig. 5-4

shows some realizations of Vout obtained by our solver. The variation looks small

on the scaled time axis, but it is significant on the original time axis due to the

uncertainties of the oscillation frequency. The CPU time of our decoupled stochas-
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Figure 5-3: Schematic of the BJT Colpitts oscillator.

tic testing-based solver is 4.9 seconds, which is 2× and 5× faster over the coupled

stochastic testing-based solver and the stochastic Galerkin-based solver [108], respec-

tively.

Finally, our solver is compared with standard MC. The computed mean and stan-

dard deviation (both in nanosecond) of the oscillation period are shown in Table 5.1.

In order to achieve the similar level of accuracy, MC must use 5000 samples, which is

about 507× slower than using our stochastic testing-based simulator. The distribu-

tions of the oscillation period from both methods are consistent, as shown in Fig. 5-5.
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Figure 5-4: Realizations of Vout for the Colpitts oscillator. (a) on the scaled time axis,
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Table 5.1: Simulation results of the oscillation period by our proposed method and
Monte Carlo.

Monte Carlo Proposed
# samples 500 2000 5000 10

mean value (ns) 17.194 17.203 17.205 17.205
s.t.d value (ns) 2.995 3.018 3.026 3.028
CPU time (s) 252 1013 2486 4.9

5.4.3 Accuracy and Efficiency

We increased the generalized polynomial chaos order from 1 to 6, and treated the

results from the 6th-order generalized polynomial chaos expansion as the “exact"

solutions. Fig. 5-6 plots the relative errors of ŷ and the speedup factors caused by

decoupling. The errors rapidly reduce to below 10−4, and the convergence slows

down when the errors approach 10−5, i.e., the threshold for the Newton’s iterations

which dominates the accuracy. In Fig. 5-6(b), the speedup curve for the LNA has

the same slope as K2 on a logarithmic scale, implying an O(K2) speedup caused by

decoupling. The speedup for the Colpitts oscillator is however not significant, since

device evaluations dominate the total cost for this small circuit. Generally, the O(K2)

speedup is more obvious for large-scale circuits.
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Figure 5-5: Distributions of the oscillation period: (a) from our proposed method,
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Figure 5-6: (a) Relative error of our solver. (b) Speedup factor caused by decoupling.

5.5 Limitations and Possible Solutions

5.5.1 Failure of Stochastic Periodic Steady-State Solvers

Our simulator computes the scaled periodic steady-state solutions by shooting New-

ton. This algorithm, however, requires an initial guess that is close to the exact

solution. For circuits with small variations, one may utilize the simulation result of

a nominal circuit as an initial guess. However, this method does not work well when

the variations become very large.

One may develop a frequency-domain simulator (e.g., using harmonic balance

technique) to solve the above problem. Harmonic balance may converge to a static
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equilibrium point, and thus a continuation method may also help to improve the

robustness. When the variation is not that large, it is worth trying to provide a

better initial guess for shooting Newton using sensitivity analysis [133].

5.5.2 Simulating High-Q Oscillators

Our simulator does not work well for high-quality (i.e., high-Q) oscillators. For de-

terministic cases, high-Q circuits can be solved by employing envelope following tech-

niques [135–137]. It would be great if these algorithms can be extended to the stochas-

tic cases. Unfortunately, this is not a trivial task because the waveform envelopes,

quality factors and oscillation frequencies are all dependent on process variations.
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Chapter 6

High-Dimensional Hierarchical

Uncertainty Quantification

Since many electronic systems are designed in a hierarchical way, this chapter exploits

such structure and simulate a complex circuit or system by hierarchical uncertainty

quantification [37, 39]. Specifically, we first utilize stochastic spectral methods to

extract surrogate models for each subsystem. Then, the circuit equations describing

the interconnection of all subsystems are solved with stochastic spectral methods

again by treating each subsystem as a single random parameter. Typical application

examples include (but are not limited to) analog/mixed-signal systems (e.g., phase-

lock loops) and MEMS/IC co-design.

The advantages of this approach are two-fold:

• The parameter dimensionality of the whole system can be significantly reduced

at the high-level simulation.

• Details of each subsystem can be ignored, leading to fewer unknown variables

when simulating the whole system.

This chapter first presents a hierarchical approach by assuming that each sub-

system is well described by a low-dimensional generalized polynomial-chaos expan-

sion. Then, we propose some efficient algorithms to accelerate the computation when

the parameter dimensionality is very high. The simulation results on a 9-parameter
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Figure 6-1: Demonstration of hierarchical uncertainty quantification.

MEMS/IC co-design show that our solver is 250× faster over the state-of-the-art

solver. Compared with Monte Carlo, the speedup factor of our technique on a high-

dimensional MEMS/IC co-design example (with 184 random parameters) is about

100×.

6.1 Hierarchical Uncertainty Quantification

6.1.1 Description of the Basic Idea

Consider Fig. 6-1, where a complex electronic circuit or system has q subsystems.

The output yi of a subsystem is influenced by some bottom-level random parameters

~ξi ∈ R
di , and the output ~h of the whole system depends on all random parameters

~ξi’s. In a statistical behavior-level simulator [1], yi is the performance metric of a

small circuit block (e.g., the frequency of a voltage-controlled oscillator) affected by

some device-level parameters ~ξi. Typical surrogate models include linear (quadratic)

response surface models [1–3, 138–140], truncated generalized polynomial chaos rep-

resentations [34,36], smooth or non-smooth functions, stochastic reduced-order mod-

els [105,141,142], and some numerical packages that can rapidly evaluate fi(~ξi) (e.g.,

computer codes that implement a compact statistical device model).

For simplicity, we assume that yi only depends on ~ξi and does not change with time
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or frequency. Directly simulating the whole system can be expensive due to the large

problem size and high parameter dimensionality. If yi’s are mutually independent

and smoothly dependent on ~ξi’s, we can accelerate the simulation in a hierarchical

way [39]:

• Step 1. We use our fast stochastic spectral simulator [34, 36] to extract a

surrogate model for each block

yi = gi(~ξi), with ~ξi ∈ R
di , i = 1, · · · , q. (6.1)

With the surrogate models, yi can be evaluated very rapidly. Note that other

techniques [1, 88, 141] can also be utilized to build surrogate models. For nu-

merical stability, we define ζi by shifting and scaling yi such that ζi has a zero

mean and unit variance.

• Step 2. By treating ζi’s as the new random sources, we compute ~h by solving

the system-level equation

G(~h, ~ζ) = 0, with ~ζ = [ζ1, · · · , ζq], (6.2)

where G is the abstraction of a proper mathematical operator that describes the

interconnections of all subsystems. Again, we use the stochastic testing algo-

rithm [34–36] to solve efficiently this system-level stochastic problem. Stochas-

tic Galerkin and stochastic collocation can be utilized as well. Note that (6.2)

can be either an algebraic or a differential equation, depending on the specific

problems.

6.1.2 Numerical Implementation

The main challenge of our hierarchical uncertainty quantification flow lies in Step 2.

In order to employ stochastic testing (or other stochastic spectral methods), we need

the univariate generalized polynomial basis functions and Gauss quadrature rule of

ζi, which are not readily available.
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Figure 6-2: Schematic of a voltage-control oscillator with MEMS capacitors.

Let ρ(ζi) be the probability density function of ζi, then we first construct p + 1

orthogonal polynomials πj(ζi) via [46] (as detailed in Chapter 2.1.1) and then a set

of Gauss quadrature points (c.f. Chapter 2.2.1). The main difficulty is to calculate

the recurrence parameters

γj =

∫

R

ζiπ
2
j (ζi)ρ(ζi)dζi

∫

R

π2
j (ζi)ρ(ζi)dζi

, κj+1 =

∫

R

π2
j+1(ζi)ρ(ζi)dζi

∫

R

π2
j (ζi)ρ(ζi)dζi

(6.3)

with κ0 = 1. Here πj(ζi) is a degree-j polynomial with leading coefficient 1 generated

according to the iterations in (2.3).

It becomes obvious that both the basis functions and quadrature points/weights

depend on the probability density function of ζi. Unfortunately, unlike the bottom-

level random parameters ~ξi’s that are well defined by process cards, the intermediate-

level random parameter ζi does not have a given density function. Therefore, the

iteration parameters γj and κj are not known.

When fi(~ξi) is smooth enough and ~ξi is of low dimensionality, we compute the

integrals in (6.3) in the parameter space of ~ξi. In this case, the multi-dimensional
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Figure 6-3: Schematic of the MEMS capacitor.

quadrature rule of ~ξi is utilized to evaluate the integral (as detailed in Chapter 2.2.2).

6.1.3 A Demonstrative Low-Dimensional MEMS/IC Co-Design

Example

As a demonstration, we consider the voltage-controlled oscillator in Fig. 6-2. This

oscillator has two independent identical MEMS capacitors Cm, the 3-D schematic of

which is shown in Fig. 6-3. Each MEMS capacitor is influenced by four Gaussian-

type process and geometric parameters, and the transistor threshold voltage is also

influenced by the Gaussian-type temperature variation. Therefore, this circuit has

nine random parameters in total. Since it is inefficient to directly solve the coupled

stochastic circuit and MEMS equations, our proposed hierarchical stochastic simula-

tor is employed.

Surrogate Model Extraction. The stochastic testing algorithm has been im-

plemented in the commercial MEMS simulator MEMS+ [143] to solve the stochastic

MEMS equation (1.4). A 3rd-order generalized polynomial-chaos expansion and 35

testing points are used to calculate the displacements, which then provide the ca-

pacitance as a surrogate model. Fig. 6-4 plots the density functions of the MEMS

capacitor from our simulator and from Monte Carlo using 1000 samples. The results
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Figure 6-4: Computed probability density function of MEMS capacitor Cm.

match perfectly, and our simulator is about 30× faster.

Higher-Level Simulation The obtained MEMS capacitor models are normal-

ized (and denoted as ζ1 and ζ2) such that they have zero means and unit variances. A

higher-level equation is constructed, which is the stochastic differential algebraic equa-

tion in (1.3) for this example. The constructed basis functions and Gauss quadrature

points/weights for ζ1 are plotted in Fig. 6-5. The stochastic-testing-based periodic

steady-state solver [36] is utilized to solve this higher-level stochastic equation to

provide 3rd-order generalized polynomial expansions for all branch currents, nodal

voltages and the oscillation period. In Fig. 6-6, the computed oscillator period from

our hierarchical stochastic spectral simulator is compared with that from the hier-

archical Monte Carlo approach [1]. Our approach requires only 20 samples and less

than 1 minute for the higher-level stochastic simulation, whereas the method in [1]

requires 5000 samples to achieve the similar level of accuracy. Therefore, the speedup

factor of our technique is about 250×.
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the intermediate-level parameter ζ1.

6.1.4 Challenges in High Dimension

When di is large, it is non-trivial to implement hierarchical uncertainty quantification

due to the following reasons.

• First, it is non-trivial to obtain a generalized polynomial chaos expansion for

yi, since a huge number of basis functions and samples are required to obtain a

good approximation of yi(~ξi).

• Second, when high accuracy is required, it is expensive to implement (6.3) due to

the non-trivial integrals when computing κj and γj. Since the density function

of ζi is unknown, the integrals must be evaluated in the domain of ~ξi, with a

cost growing exponentially with di when a deterministic quadrature rule is used.

In the following two sections, efficient algorithms will be proposed to mitigate the

above two problems.

6.2 ANOVA-Based Surrogate Model Extraction

In order to accelerate the low-level simulation, this section develops a sparse stochastic

circuit/MEMS simulator based on anchored ANOVA (analysis of variance). Without

of loss of generality, let y = g(~ξ) denote the output of a subsystem. We assume that y
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Figure 6-6: Histograms of the oscillator period, (a) from our hierarchical stochastic
spectral simulator, (b) from hierarchical Monte Carlo [1].

is a smooth function of the random parameters ~ξ ∈ Ω ⊆ R
d that describe the process

variations.

6.2.1 ANOVA and Anchored ANOVA Decomposition

ANOVA. With ANOVA decomposition [144,145], y can be written as

y = g(~ξ) =
∑

s⊆I
gs(~ξs), (6.4)

where s is a subset of the full index set I = {1, 2, · · · , d}. Let s̄ be the complementary

set of s such that s ∪ s̄ = I and s ∩ s̄ = ∅, and let |s| be the number of elements in

s . When s =
{

i1, · · · , i|s|
}

6= ∅, we set Ωs = Ωi1 ⊗ · · · ⊗ Ωi|s| ,
~ξs = [ξi1 , · · · , ξi|s| ] ∈ Ωs

and have the Lebesgue measure

dµ(~ξs̄) =
∏

k∈s̄
(ρk (ξk) dξk). (6.5)
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Then, gs(~ξs) in ANOVA decomposition (6.4) is defined recursively by the following

formula

gs(~ξs) =











E

(

g(~ξ)
)

=
∫

Ω

g(~ξ)dµ(~ξ) = g0, if s = ∅

ĝs(~ξs)−
∑

t⊂s

gt(~ξt) , if s 6= ∅.
(6.6)

Here E is the expectation operator, ĝs(~ξs) =
∫

Ωs̄

g(~ξ)dµ(~ξs̄), and the integration is

computed for all elements except those in ~ξs . From (6.6), we have the following

intuitive results:

• g0 is a constant term;

• if s={j}, then ĝs(~ξs) = ĝ{j}(ξj), gs(~ξs) = g{j}(ξj) = ĝ{j}(ξj)− g0;

• if s={j, k} and j < k, then ĝs(~ξs) = ĝ{j,k}(ξj, ξk) and gs(~ξs) = ĝ{j,k}(ξj, ξk) −
g{j}(ξj)− g{k}(ξk)− g0;

• both ĝs(~ξs) and gs(~ξs) are |s|-variable functions, and the decomposition (6.4)

has 2d terms in total.

Example 1. Consider y = g(~ξ) = g(ξ1, ξ2). Since I = {1, 2}, its subset includes ∅,
{1}, {2} and {1, 2}. As a result, there exist four terms in the ANOVA decomposition

(6.4):

• for s = ∅, g∅(~ξ∅) = E

(

g(~ξ)
)

= g0 is a constant;

• for s = {1}, g{1}(ξ1)=ĝ{1}(ξ1)− g0, and ĝ{1}(ξ1) =
∫

Ω2

g(~ξ)ρ2(ξ2)dξ2 is a univari-

ate function of ξ1;

• for s = {2}, g{2}(ξ2)=ĝ{2}(ξ2)− g0, and ĝ{2}(ξ2) =
∫

Ω1

g(~ξ)ρ1(ξ1)dξ1 is a univari-

ate function of ξ2;

• for s={1, 2}, g{1,2}(ξ1, ξ2)=ĝ{1,2}(ξ1, ξ2)− g{1}(ξ1)− g{2}(ξ2)− g0. Since s̄=∅, we

have ĝ{1,2}(ξ1, ξ2) = g(~ξ), which is a bi-variate function.
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Since all terms in the ANOVA decomposition are mutually orthogonal [144, 145],

we have

Var

(

g(~ξ)
)

=
∑

s⊆I
Var

(

gs(~ξs)
)

(6.7)

where Var(•) denotes the variance over the whole parameter space Ω. What makes

ANOVA practically useful is that for many engineering problems, g(~ξ) is mainly

influenced by the terms that depend only on a small number of variables, and thus it

can be well approximated by a truncated ANOVA decomposition

g(~ξ) ≈
∑

|s|≤deff

gs(~ξs), s ⊆ I (6.8)

where deff ≪ d is called the effective dimension.

Example 2. Consider y = g(~ξ) with d = 20. In the full ANOVA decomposition

(6.4), we need to compute over 106 terms, which is prohibitively expensive. However,

if we set deff = 2, we have the following approximation

g(~ξ) ≈ g0 +
20
∑

j=1

gj(ξj) +
∑

1≤j<k≤20

gj,k(ξj, ξk) (6.9)

which contains only 221 terms.

Unfortunately, it is still expensive to obtain the truncated ANOVA decomposition

(6.8) due to two reasons. First, the high-dimensional integrals in (6.6) are expensive

to compute. Second, the truncated ANOVA decomposition (6.8) still contains lots of

terms when d is large. In the following, we introduce anchored ANOVA that solves

the first problem. The second issue will be addressed in Section 6.2.2.

Anchored ANOVA. In order to avoid the expensive multidimensional inte-

gral computation, [145] has proposed an efficient algorithm which is called anchored

ANOVA in [146–148]. Assuming that ξk’s have standard uniform distributions, an-

chored ANOVA first chooses a deterministic point called anchored point ~q = [q1, · · · , qd] ∈
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[0, 1]d, and then replaces the Lebesgue measure with the Dirac measure

dµ(~ξs̄) =
∏

k∈s̄
(δ (ξk − qk) dξk). (6.10)

As a result, g0 = g(~q), and

ĝs(~ξs) = g
(

ξ̃
)

, with ξ̃k =







qk, if k ∈ s̄

ξk, otherwise.
(6.11)

Here ξ̃k denotes the k-th element of ξ̃ ∈ R
d, qk is a fixed deterministic value, and ξk

is a random variable. Anchored ANOVA was further extended to Gaussian random

parameters in [147]. In [146, 148, 149], this algorithm was combined with stochastic

collocation to efficiently solve high-dimensional stochastic partial differential equa-

tions.

Example 3. Consider y=g(ξ1, ξ2). With an anchored point ~q = [q1, q2], we have

g0 = g(q1, q2), ĝ{1}(ξ1) = g(ξ1, q2), ĝ{2}(ξ2) = g(q1, ξ2) and ĝ{1,2}(ξ1, ξ2) = g(ξ1, ξ2).

Computing these quantities does not involve any high-dimensional integrations.

6.2.2 Adaptive Anchored ANOVA for Circuit/MEMS Prob-

lems

Extension to General Cases. In many circuit and MEMS problems, the process

variations can be non-uniform and non-Gaussian. We show that anchored ANOVA

can be applied to such general cases.

Observation: The anchored ANOVA in [145] can be applied if ρk(ξk) > 0 for any

ξk ∈ Ωk.

Proof. Let uk denote the cumulative density function for ξk, then uk can be treated

as a random variable uniformly distributed on [0, 1]. Since ρk(ξk) > 0 for any

ξk ∈ Ωk, there exists ξk = λk(uk) which maps uk to ξk. Therefore, g(ξ1, · · · , ξd) =
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g (λ1(u1), · · · , λd(ud)) = ψ(~u) with ~u = [u1, · · · , ud]. Following (6.11), we have

ψ̂s(~us) = ψ (ũ) , with ũk =







pk, if k ∈ s̄

uk, otherwise,
(6.12)

where ~p = [p1, · · · , pd] is the anchor point for ~u. The above result can be rewritten as

ĝs(~ξs) = g
(

ξ̃
)

, with ξ̃k =







λk(qk), if k ∈ s̄

λk(ξk), otherwise,
(6.13)

from which we can obtain gs(~ξs) defined in (6.6). Consequently, the decomposition

for g(~ξ) can be obtained by using ~q = [λ1(p1), · · · , λd(pd)] as an anchor point of ~ξ.

Anchor point selection. It is is important to select a proper anchor point [148].

In circuit and MEMS applications, we find that ~q = E(~ξ) is a good choice.

Adaptive Implementation. In order to further reduce the computational cost,

the truncated ANOVA decomposition (6.8) can be implemented in an adaptive way.

Specifically, in practical computation we can ignore those terms that have small vari-

ance values. Such a treatment can produce a highly sparse generalized polynomial-

chaos expansion.

For a given effective dimension deff ≪ d, let

Sk = {s|s ⊂ I, |s| = k} , k = 1, · · · deff (6.14)

contain the initialized index sets for all k-variate terms in the ANOVA decomposition.

Given an anchor point ~q and a threshold σ, starting from k=1, the main procedures

of our ANOVA-based stochastic simulator are summarized below:

1. Compute g0, which is a deterministic evaluation;

2. For every s ∈ Sk, compute the low-dimensional function gs(~ξs) by stochastic
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testing. The importance of gs(~ξs) is measured as

θs =
Var

(

gs

(

~ξs

))

k
∑

j=1

∑

s̃∈Sj

Var

(

gs̃

(

~ξs̃

))

. (6.15)

3. Update the index sets if θs < σ for s ∈ Sk. Specifically, for k < j ≤ deff , we

check its index set s
′ ∈ Sj. If s′ contains all elements of s , then we remove

s′ from Sj. Once s′ is removed, we do not need to evaluate gs′(~ξs′) in the

subsequent computation.

4. Set k= k + 1, and repeat steps 2) and 3) until k = ddef .

Example 4. Let y=g(~ξ), ~ξ ∈ R
20 and deff = 2. Anchored ANOVA starts with

S1 = {{j}}j=1,··· ,20 and S2 = {{j, k}}1≤j<k≤20 .

For k=1, we first utilize stochastic testing to calculate gs(~ξs) and θs for every s ∈ S1.

Assume

θ{1} > σ, θ{2} > σ, and θ{j} < σ for all j > 2,

implying that only the first two parameters are important to the output. Then, we

only consider the coupling of ξ1 and ξ2 in S2, leading to

S2 = {{1, 2}} .

Consequently, for k = 2 we only need to calculate one bi-variate function g{1,2}(ξ1, ξ2),

yielding

g
(

~ξ
)

≈ g0 +
∑

s∈S1

gs

(

~ξs

)

+
∑

s∈S2

gs

(

~ξs

)

= g0 +
20
∑

j=1

g{j} (ξj) + g{1,2} (ξ1, ξ2) .

The pseudo codes of our implementation are summarized in Alg. 2. Lines 10 to 15

shows how to adaptively select the index sets. Let the final size of Sk be |Sk| and the

total polynomial order in the stochastic testing simulator be p, then the total number
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Algorithm 2 Stochastic Testing Circuit/MEMS Simulator Based on Adaptive An-
chored ANOVA.
1: Initialize Sk’s and set β = 0;
2: At the anchor point, run a deterministic circuit/MEMS simulation to obtain g0,

and set y = g0;
3: for k = 1, · · · , deff do
4: for each s ∈ Sk do
5: run stochastic testing simulator to get the generalized

polynomial-chaos expansion of ĝs(~ξs) ;
6: get the generalized polynomial-chaos expansion of

gs(~ξs) according to (6.6);

7: update β = β +Var

(

gs(~ξs)
)

;

8: update y = y + gs(~ξs);
9: end for

10: for each s ∈ Sk do

11: θs = Var

(

gs(~ξs)
)

/β;

12: if θs < σ
13: for any index set s

′ ∈ Sj with j > k, remove
s
′ from Sj if s ⊂ s

′.
14: end if
15: end for
16: end for

of samples used in Alg. 2 is

N = 1 +

deff
∑

k=1

|Sk|
(k + p)!

k!p!
. (6.16)

Note that all univariate terms in ANOVA (i.e., |s| = 1) are kept in our implemen-

tation. For most circuit and MEMS problems, setting the effective dimension as 2

or 3 can achieve a high accuracy due to the weak couplings among different random

parameters. For many cases, the univariate terms dominate the output of interest,

leading to a near-linear complexity with respect to the parameter dimensionality d.

Remarks. Anchored ANOVA works very well for a large class of MEMS and

circuit problems. However, in practice we also find a small number of examples (e.g.,

CMOS ring oscillators) that cannot be solved efficiently by the proposed algorithm,

since many random variables affect significantly the output of interest. For such

problems, it is possible to reduce the number of dominant random variables by a
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linear transform [150] before applying anchored ANOVA. Other techniques such as

compressed sensing can also be utilized to extract highly sparse surrogate models [88,

89,151,152] in the low-level simulation of our proposed hierarchical framework.

Global Sensitivity Analysis. Since each term gs(ss) is computed by stochastic

testing, Algorithm 2 provides a sparse generalized polynomial-chaos expansion for

the output of interest: y=
∑

|~α|≤p

y~αH~α(~ξ), where most coefficients are zero. From this

result, we can identify how much each parameter contributes to the output by global

sensitivity analysis. Two kinds of sensitivity information can be used to measure

the importance of parameter ξk: the main sensitivity Sk and total sensitivity Tk, as

computed below:

Sk =

∑

αk 6=0,αj 6=k=0

|y~α|2

Var(y)
, Tk =

∑

αk 6=0

|y~α|2

Var(y)
. (6.17)

6.3 Enabling High-Level Simulation by Tensor-Train

Decomposition

In this section, we show how to accelerate the high-level non-Monte-Carlo simula-

tion by handling the obtained high-dimensional surrogate models with tensor-train

decomposition [65–67].

6.3.1 Tensor-Based Three-Term Recurrence Relation

In order to obtain the orthonormal polynomials and Gauss quadrature points/weights

of ζ, we must implement the three-term recurrence relation in (2.4). The main bot-

tleneck is to compute the integrals in (6.3), since the probability density function of

ζ is unknown.

For simplicity, we rewrite the integrals in (6.3) as E(q(ζ)), with q(ζ) = φ2
j(ζ) or

q(ζ) = ζφ2
j(ζ). Since the probability density function of ζ is not given, we compute
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the integral in the parameter space Ω:

E (q (ζ)) =

∫

Ω

q
(

f
(

~ξ
))

ρ(~ξ)dξ1 · · · dξd, (6.18)

where f(~ξ) is a sparse generalized polynomial-chaos expansion for ζ obtained by

ζ = f(~ξ) =
(y − E(y))
√

Var(y)
=

∑

|~α|≤p

ŷ~αH~α(~ξ). (6.19)

We compute the integral in (6.18) with the following steps:

1. We utilize a multi-dimensional Gauss quadrature rule:

E (q (ζ)) ≈
m1
∑

i1=1

· · ·
md
∑

id=1

q
(

f
(

ξi11 , · · · , ξidd
))

d
∏

k=1

wik
k (6.20)

where mk is the number of quadrature points for ξk, (ξ
ik
k , w

ik
k ) denotes the ik-th

Gauss quadrature point and weight.

2. We define two d-mode tensors Q, W ∈ R
m1×m2···×md , with each element defined

as

Q (i1, · · · id) = q
(

f
(

ξi11 , · · · , ξidd
))

,

W (i1, · · · id) =
d
∏

k=1

wik
k ,

(6.21)

for 1 ≤ ik ≤ mk. Now we can rewrite (6.20) as the inner product of Q and W :

E (q (ζ)) ≈ 〈Q,W〉 . (6.22)

For simplicity, we set mk=m in this manuscript.

The cost of computing the tensors and the tensor inner product is O(md), which

becomes intractable when d is large. Fortunately, both Q and W have low tensor

ranks in our applications, and thus the high-dimensional integration (6.18) can be

computed very efficiently in the following way:
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1. Low-rank representation of W. W can be written as a rank-1 tensor

W = w
(1) ◦w(2) · · · ◦w(d), (6.23)

where w
(k) = [w1

k; · · · ;wm
k ] ∈ R

m×1 contains all Gauss quadrature weights for

parameter ξk. Clearly, now we only need O(md) memory to store W .

2. Low-rank approximation for Q. Q can be well approximated by Q̂ with

high accuracy in a tensor-train format [65–67]:

Q̂ (i1, · · · id) = G1 (:, i1, :)G2 (:, i1, :) · · ·Gd (:, id, :) (6.24)

with a pre-selected error bound ǫ such that

∥

∥

∥Q− Q̂

∥

∥

∥

F
≤ ε ‖Q‖F . (6.25)

For many circuit and MEMS problems, a tensor train with very small TT-

ranks can be obtained even when ǫ = 10−12 (which is very close to the machine

precision).

3. Fast computation of (6.22). With the above low-rank tensor representations,

the inner product in (6.22) can be accurately estimated as

〈

Q̂,W
〉

= T1 · · ·Td, with Tk =
m
∑

ik=1

wik
k Gk (:, ik, :) (6.26)

Now the cost of computing the involved high-dimensional integration dramat-

ically reduces to O(dmr2), which only linearly depends the parameter dimen-

sionality d.

6.3.2 Efficient Tensor-Train Computation

Now we discuss how to obtain a low-rank tensor train. An efficient implementation

called TT_cross is described in [67] and included in the public-domain MATALB
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package TT_Toolbox [153]. In TT_cross, Skeleton decomposition is utilized to

compress the TT-rank rk by iteratively searching a rank-rk maximum-volume subma-

trix when computing Gk. A major advantage of TT_cross is that we do not need

to know Q a-priori. Instead, we only need to specify how to evaluate the element

Q(i1, · · · , id) for a given index (i1, · · · , id). As shown in [67], with Skeleton decom-

positions a tensor-train decomposition needs O(ldmr2) element evaluations, where l

is the number of iterations in a Skeleton decomposition. For example, when l = 10,

d = 50, m = 10 and r = 4 we may need up to 105 element evaluations, which can

take about one hour since each element of Q is a high-order polynomial function of

many bottom-level random variables ~ξ.

In order to make the tensor-train decomposition of Q fast, we employ some tricks

to evaluate more efficiently each element of Q. The details are given below.

• Fast evaluation of Q(i1, · · · , id). In order to reduce the cost of evaluating

Q(i1, · · · , id), we first construct a low-rank tensor train Â for the intermediate-

level random parameter ζ, such that

∥

∥

∥
A− Â

∥

∥

∥

F
≤ ε ‖A‖F , A (i1, · · · , id) = f

(

ξi11 , · · · , ξidd
)

.

Once Â is obtained, Q(i1, · · · , id) can be evaluated by

Q (i1, · · · , id) ≈ q
(

Â (i1, · · · , id)
)

, (6.27)

which reduces to a cheap low-order univariate polynomial evaluation. However,

computing Â(i1, · · · , id) by directly evaluating A(i1, · · · , id) in TT_cross can

be time-consuming, since ζ = f(~ξ) involves many multivariate basis functions.

• Fast evaluation of A(i1, · · · , id). The evaluation of A (i1, · · · , id) can also

be accelerated by exploiting the special structure of f(~ξ). It is known that the

generalized polynomial-chaos basis of ~ξ is

H~α

(

~ξ
)

=
d
∏

k=1

ϕ(k)
αk

(ξk), ~α = [α1, · · · , αd] (6.28)

108



where ϕ
(k)
αk (ξk) is the degree-αk orthonormal polynomial of ξk, with 0 ≤ αk ≤ p.

We first construct a 3-mode tensor X ∈ R
d×(p+1)×m indexed by (k, αk + 1, ik)

with

X (k, αk + 1, ik) = ϕ(k)
αk

(

ξikk
)

(6.29)

where ξikk is the ik-th Gauss quadrature point for parameter ξk [as also used in

(6.20)]. Then, each element of A (i1, · · · , id) can be calculated efficiently as

A (i1, · · · , id) =
∑

|~α|<p

~y~α

d
∏

k=1

X (k, αk + 1, ik) (6.30)

without evaluating the multivariate polynomials. Constructing X does not

necessarily need d(p + 1)m polynomial evaluations, since the matrix X (k, :, :)

can be reused for any other parameter ξj that has the same type of distribution

with ξk.

In summary, we compute a tensor-train decomposition for Q as follows: 1) we

construct the 3-mode tensor X defined in (6.29); 2) we call TT_cross to compute Â

as a tensor-train decomposition of A, where (6.30) is used for fast element evaluation;

3) we call TT_cross again to compute Q̂, where (6.27) is used for the fast element

evaluation of Q. With the above fast tensor element evaluations, the computation

time of TT_cross can be reduced from dozens of minutes to several seconds to

generate some accurate low-rank tensor trains for our high-dimensional surrogate

models.

6.3.3 Algorithm Summary

Given the Gauss quadrature rule for each bottom-level random parameter ξk, our

tensor-based three-term recurrence relation for an intermediate-level random param-

eter ζ is summarized in Alg. 3. This procedure can be repeated for all ζi’s to ob-

tain their univariate generalized polynomial-chaos basis functions and Gauss quadra-

ture rules, and then the stochastic testing simulator [34–36] (and any other standard

stochastic spectral method [40,54,93]) can be employed to perform high-level stochas-
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Algorithm 3 Tensor-based generalized polynomial-chaos basis and Gauss quadrature
rule construction for ζ.

1: Initialize: φ0(ζ) = π0(ζ) = 1, φ1(ζ) = π1(ζ) = ζ, κ0 = κ1 = 1, γ0 = 0, a = 1;
2: Compute a low-rank tensor train Â for ζ;

3: Compute a low-rank tensor train Q̂ for q(ζ) = ζ3, and obtain γ1 =
〈

Q̂,W
〉

via

(6.26);
4: for j = 2, · · · , p do
5: get πj(ζ) = (ζ − γj−1)πj−1(ζ)− κj−1πj−2(ζ) ;

6: construct a low-rank tensor train Q̂ for q(ζ) = π2
j (ζ),

and compute â =
〈

Q̂,W
〉

via (6.26) ;

7: κj = â/a, and update a = â ;

8: construct a low-rank tensor train Q̂ for q(ζ) = ζπ2
j (ζ), and compute γj =

〈

Q̂,W
〉

/a ;

9: normalization: φj(ζ) =
πj(ζ)√
κ0···κj

;

10: end for
11: Form matrix J in (2.12);
12: Eigenvalue decomposition: J = UΣUT ;
13: Compute the Gauss-quadrature abscissa ζj = Σ(j, j) and weight wj = (U(1, j))2

for j = 1, · · · , p+ 1 ;

tic simulation.

Remarks. 1) If the outputs of a group of subsystems are identically independent,

we only need to run Alg. 3 once and reuse the results for the other subsystems in the

group. 2) When there exist many subsystems, our ANOVA-based stochastic solver

may also be utilized to accelerate the high-level simulation.

6.4 Numerical Results of a High-Dimensional MEMS/IC

Co-Design

6.4.1 MEMS/IC Example

In order to demonstrate the application of our hierarchical uncertainty quantification

in high-dimensional problems, we consider the oscillator circuit shown in Fig. 6-7.

This oscillator has four identical RF MEMS switches acting as tunable capacitors.

The MEMS device used in this paper is a prototyping model of the RF MEMS
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Figure 6-7: Schematic of the oscillator circuit with 4 MEMS capacitors (denoted as
Cm), with 184 random parameters in total.

Table 6.1: Different hierarchical simulation methods.
Method Low-level simulation High-level simulation

Proposed Alg. 2 stochastic testing [36]
Method 1 [1] Monte Carlo Monte Carlo

Method 2 Alg. 2 Monte Carlo

capacitor reported in [154,155].

Since the MEMS switch has a symmetric structure, we construct a model for

only half of the design, as shown in Fig. 6-8. The simulation and measurement

results in [33] show that the pull-in voltage of this MEMS switch is about 37 V.

When the control voltage is far below the pull-in voltage, the MEMS capacitance

is small and almost constant. In this paper, we set the control voltage to 2.5 V,

and thus the MEMS switch can be regarded as a small linear capacitor. As already

shown in [31], the performance of this MEMS switch can be influenced significantly

by process variations.

In our numerical experiments, we use 46 independent random parameters with

Gaussian and Gamma distributions to describe the material (e.g, conductivity and
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Figure 6-8: 3-D schematic of the RF MEMS capacitor.
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Figure 6-9: Comparison of the density functions obtained by our surrogate model and
by 5000-sample Monte Carlo analysis of the original MEMS equation.

dielectric constants), geometric (e.g., thickness of each layer, width and length of each

mechanical component) and environmental (e.g., temperature) uncertainties of each

switch. For each random parameter, we assume that its standard deviation is 3% of

its mean value. In the whole circuit, we have 184 random parameters in total. Due

to such high dimensionality, simulating this circuit by stochastic spectral methods is

a challenging task.

In the following experiments, we simulate this challenging design case using our

proposed hierarchical stochastic spectral methods. We also compare our algorithm

with other two kinds of hierarchical approaches listed in Table 6.1. In Method 1, both
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Table 6.2: Surrogate model extraction with different σ values.
σ # |s |= 1 # |s |= 2 # |s |= 3 # ANOVA # nonzero gPC # samples

0.5 46 0 0 47 81 185
0.1 to 10−3 46 3 0 50 90 215

10−4 46 10 1 58 112 305
10−5 46 21 1 69 144 415

low-level and high-level simulations use Monte Carlo, as suggested by [1]. In Method

2, the low-level simulation uses our ANOVA-based sparse simulator (Alg. 2), and the

high-level simulation uses Monte Carlo.

6.4.2 Surrogate Model Extraction

In order to extract an accurate surrogate model for the MEMS capacitor, Alg. 2 is

implemented in the commercial network-based MEMS simulation tool MEMS+ [143]

of Coventor Inc. Each MEMS switch is described by a stochastic differential equation

[c.f. (1.3)] with consideration of process variations. In order to compute the MEMS

capacitor, we can ignore the derivative terms and solve for the static solutions.

By setting σ = 10−2, our ANOVA-based stochastic MEMS simulator generates a

sparse 3rd-order generalized polynomial chaos expansion with only 90 non-zero co-

efficients, requiring only 215 simulation samples and 8.5 minutes of CPU time in

total. This result has only 3 bivariate terms and no three-variable terms in ANOVA

decomposition, due to the very weak couplings among different random parameters.

Setting σ = 10−2 can provide a highly accurate generalized polynomial chaos expan-

sion for the MEMS capacitor, which has a relative error around 10−6 (in the L2 sense)

compared to that obtained by setting σ = 10−5.

By evaluating the surrogate model and the original model (by simulating the

original MEMS equation) with 5000 samples, we have obtained the same probability

density curves shown in Fig. 6-9. Note that using the standard stochastic testing

simulator [34–36] requires 18424 basis functions and simulation samples for this high-

dimensional example, which is prohibitively expensive on a regular computer. When

the effective dimension deff is set as 3, there should be 16262 terms in the truncated

ANOVA decomposition (6.8). However, due to the weak couplings among different
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Figure 6-10: Main and total sensitivities of different random parameters for the RF
MEMS capacitor.

random parameters, only 90 of them are non-zero.

We can get surrogate models with different accuracies by changing the threshold

σ. Table 6.2 has listed the number of obtained ANOVA terms, the number of non-

zero generalized polynomial chaos (gPC) terms and the number of required simulation

samples for different values of σ. From this table, we have the following observations:

1. When σ is large, only 46 univariate terms (i.e., the terms with |s| = 1) are

obtained. This is because the variance of all univariate terms are regarded as

small, and thus all multivariate terms are ignored.

2. When σ is reduced (for example, to 0.1), three dominant bivariate terms (with

|s| = 2) are included by considering the coupling effects of the three most

influential random parameters. Since the contributions of other parameters are

insignificant, the result does not change even if σ is further decreased to 10−3.

3. A three-variable term (with |s| = 3) and some bivariate coupling terms among

other parameters can only be captured when σ is reduced to 10−4 or below. In

this case, the effect of some non-dominant parameters can be captured.

Fig. 6-10 shows the global sensitivity of this MEMS capacitor with respect to

all 46 random parameters. The output is dominated by only 3 parameters. The
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Figure 6-11: TT-rank for the surrogate model of the RF MEMS capacitor.
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Figure 6-12: (a) Gauss quadrature rule and (b) generalized polynomial chaos (gPC)
basis functions for the RF MEMS capacitor.

other 43 parameters contribute to only 2% of the capacitor’s variance, and thus their

main and total sensitivities are almost invisible in Fig. 6-10. This explains why the

generalized polynomial-chaos expansion is highly sparse. Similar results have already

been observed in the statistical analysis of CMOS analog circuits [37].

6.4.3 High-Level Simulation

The surrogate model obtained with σ = 10−2 is imported into the stochastic testing

circuit simulator described in [34–36] for high-level simulation. At the high-level, we
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Figure 6-13: Simulated waveforms on the scaled time axis τ = t/a(~ζ). (a) and (b):
the mean and standard deviation of Vout1 (unit: V), respectively; (c) and (d): the
mean and standard deviation of the current (unit: A) from Vdd, respectively.

have a stochastic DAE to describe the oscillator

d~q
(

~x(t, ~ζ), ~ξ
)

dt
+ ~f

(

~x(t, ~ζ), ~ζ, u
)

= 0
(6.31)

where the input signal u is constant, ~ζ=[ζ1, · · · , ζ4] ∈ R
4 are the intermediate-level

random parameters describing the four MEMS capacitors. Since the oscillation period

T (~ζ) now depends on the MEMS capacitors, the periodic steady-state can be written

as ~x(t, ζ) = ~x(t + T (~ζ), ζ). We simulate the stochastic oscillator by the algorithm

in Chapter 3. The scaled waveform z(τ, ~ζ) is computed and then mapped onto the

original time axis t.

In order to apply stochastic testing at the high level, we need to compute some spe-

cialized orthonormal polynomials and Gauss quadrature points for each intermediate-

level parameter ζi. We use 9 quadrature points for each bottom-level parameter ξk to

evaluate the high-dimensional integrals involved in the three-term recurrence relation.

This leads to 946 function evaluations at all quadrature points, which is prohibitively

expensive.

In order to handle the high-dimensional MEMS surrogate models, the following
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Figure 6-14: Probability density functions of the oscillation frequency.

tensor-based procedures are employed:

• With Alg. 3, a low-rank tensor train of ζ1 is first constructed for an MEMS

capacitor. For most dimensions the rank is only 2, and the highest rank is 4, as

shown in Fig. 6-11.

• Using the obtained tensor train, the Gauss quadrature points and generalized

polynomial chaos basis functions are efficiently computed, as plotted in Fig. 6-

12.

The total CPU time for constructing the tensor trains and computing the basis

functions and Gauss quadrature points/weights is about 40 seconds in MATALB. If

we directly evaluate the high-dimensional multivariate generalized polynomial-chaos

expansion, the three-term recurrence relation requires almost 1 hour. The obtained

results can be reused for all MEMS capacitors since they are independently identical.

With the obtained basis functions and Gauss quadrature points/weights for each

MEMS capacitor, the stochastic periodic steady-state solver [36] is called at the high

level to simulate the oscillator. Since there are 4 intermediate-level parameters ζi’s,

only 35 basis functions and testing samples are required for a 3rd-order generalized
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Figure 6-15: Realization of the output voltages (unit: volt) at 100 bottom-level sam-
ples, generated by (a) proposed method and (b) Method 1.

polynomial-chaos expansion, leading to a simulation cost of only 56 seconds in MAT-

LAB.

Fig. 6-13 shows the waveforms from our algorithm at the scaled time axis τ =

t/a(~ζ). The high-level simulation generates a generalized polynomial-chaos expansion

for all nodal voltages, branch currents and the exact parameter-dependent period.

Evaluating the resulting generalized polynomial-chaos expansion with 5000 samples,

we have obtained the density function of the frequency, which is consistent with those

from Method 1 (using 5000 Monte Carlo samples at both levels) and Method 2 (using

Alg. 1 at the low level and using 5000 Monte-Carlo samples at the high level), as

shown in Fig. 6-14.

In order to show the variations of the waveform, we further plot the output voltages

for 100 bottom-level random samples. As shown in Fig. 6-15, the results from our

proposed method and from Method 1 are indistinguishable from each other.

118



Table 6.3: CPU times of different hierarchical stochastic simulation algorithms.

Simulation Method
Low level High level

Total simulation cost
Method CPU time Method CPU time

Proposed Alg. 2 8.5 min stochastic testing 1.5 minute Low (10 min)
Method 1 Monte Carlo 13.2 h Monte Carlo 2.2 h High (15.4 h)
Method 2 Alg. 2 8.5 min Monte Carlo 2.2 h Medium (2.3 h)

Vdd

Figure 6-16: Schematic of a 7-stage CMOS ring oscillator.

6.4.4 Computational Cost

Table 6.3 has summarized the performances of all three methods. In all Monte Carlo

analysis, 5000 random samples are utilized. If Method 1 [1] is used, Monte Carlo has to

be repeatedly used for each MEMS capacitor, leading to extremely long CPU time due

to the slow convergence. If Method 2 is used, the efficiency of the low-level surrogate

model extraction can be improved due to the employment of generalized polynomial-

chaos expansion, but the high-level simulation is still time-consuming. Since our

proposed technique utilizes fast stochastic testing algorithms at both levels, this high-

dimensional example can be simulated at very low computational cost, leading to 92×
speedup over Method 1 and 14× speedup over Method 2.
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6.5 Limitations and Possible Solutions

6.5.1 Limitation of Alg. 2

The ANOVA-based algorithm may become inefficient for a circuit with lots of impor-

tant random parameters. For such a case, lots of multi-variable functions may have

to be evaluated in Alg. 2. A typical example is CMOS ring oscillator, where each

n-type (or p-type) transistor contributes equally to the frequency, and thus few ran-

dom variables can be ignored. Consider the 7-stage ring oscillator shown in Fig. 6-16.

Assume that for each transistor we have important four variations: threshold voltage,

gate oxide thickness, effective width and length, resulting in 56 random parameters

in total. We may find that none of these random parameters can be ignored after

obtaining the uni-variate terms. As a result, 1520 bi-variate functions have to be

computed even if we set the effective dimension as low as 2. Consequently, to obtain

a 3rd-order generalized polynomial-chaos expansion, 15624 function values must be

evaluated, which can be prohibitively expensive.

We suggest two possible solutions to this problem. First, one may rotate the

parameter space such that in the rotated space only a few random parameters are

important. Second, compressed sensing or machine learning techniques can be useful

to obtain a sparse model even if rotating the parameter space is difficult or impossible.

6.5.2 Limitation of Alg. 3

Alg. 3 is efficient if the outputs of all subsystems have low tensor ranks. This may not

be true for some cases. For example, when simulating the uncertainties of a phase-lock

loop (c.f. Fig. 6-17), one needs to use both the frequency and frequency gain of the

voltage-controlled oscillator (VCO) as the inputs of a system-level description. Using

our stochastic simulator, a sparse and low-rank approximation for the oscillator’s

period can be obtained, but the corresponding frequency and frequency gain are not

guaranteed to have low tensor ranks.

In order to make the high-level simulation efficient for high-dimensional cases,

120



Figure 6-17: The block diagram of a phase-lock loop.

it is desirable to develop novel simulators that can guarantee sparse and low-rank

properties simultaneously.
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Chapter 7

Enabling Hierarchical Uncertainty

Quantification by Density Estimation

In this chapter we develop an alternative approach to enable hierarchical uncertainty

quantification. Instead of using fast multi-dimensional integration, this approach first

computes the density function of each subsystem, and then computes the basis func-

tions and Gauss quadrature rules required for high-level uncertainty quantification in

an analytical way. Specifically, using two monotone interpolation schemes [156–159],

physically consistent closed-form cumulative density functions and probability density

functions are constructed for the output of each subsystem. Due to the special forms

of the obtained density functions, we can determine a proper Gauss quadrature rule

and the basis functions that further allow a generalized polynomial chaos expansion

in system-level simulation.

Although more accuracy may be lost compared with the approach in Chapter 6,

this alternative is useful even if the output of a subsystem has non-smooth depen-

dence on process variations (for instance, when the subsystem is described by a pa-

rameterized or stochastic reduced-order model [18, 19, 141]). The density estimation

suggested in this chapter also shows some better numerical properties over existing

moment-matching techniques such as asymptotic probability extraction [2, 3].
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7.1 Algorithms via Density Estimation

Assume that we have a general (and possibly non-smooth) surrogate model

x̂ = f(~ξ), with ~ξ ∈ R
d (7.1)

to represent the output of a subsystem in a complex system design, where x̂ denote

multiple mutually independent lower-level random parameters. We aim to approxi-

mate the density function of x̂ such that a set of orthonormal polynomials and Gauss

quadrature points/weights can be computed for high-level uncertainty quantification.

The approximated density function should be physically consistent. In other words,

• The approximated probability density function should be non-negative;

• The obtained cumulative density function should be monotonic increasing from

0 to 1.

Both both kernel density estimation [160–162] and asymptotic probability extrac-

tion [2, 3] can be used to approximate a density function. Kernel density estimation

is seldom used in circuit modeling due to several shortcomings. First, the approxi-

mated probability density function is not compact: one has to store all samples as

the parameters of a density function, which is inefficient for reuse in a stochastic

simulator. Second, it is not straightforward to generate samples from the approxi-

mated probability density function. Third, the accuracy of kernel density estimation

highly depends on the specific forms of the kernel functions (although Gaussian kernel

seems suitable for the examples used in this work) as well as some parameters (e.g.,

the smoothing parameter). In contrast, asymptotic probability extraction [2, 3] and

its variant can efficiently approximate the density of x̂ by moment matching, but it is

numerically unstable and the obtained density function may be physically inconsis-

tent [163]. Furthermore, asymptotic probability extraction has a strict restriction on

the form of f(~ξ): ~ξ should be Gaussian and f(~ξ) should be very smooth (for instance,

being a linear quadratic function).
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surrogate 
models

CDF & PDF
gPC and 

Gauss quadrature 
rule

random 
samples

Figure 7-1: Construct generalized polynomial-chaos (gPC) bases and Gauss quadra-
ture rules from surrogate models. Here CDF and PDF means “cumulative density
function" and “probability density function", respectively.

We first employ the linear transformation

x =
x̂− a

b
(7.2)

to define a new random input x, which aims to improve the numerical stability.

Once we obtain the cumulative density function and probability density function of

x (denoted as p(x) and ρ(x), respectively), then the cumulative density function and

probability density function of x̂ can be obtained by

p̂(x̂) = p

(

x̂− a

b

)

and ρ̂(x̂) =
1

b
ρ(
x̂− a

b
) (7.3)

respectively.

As shown in Fig. 7-1, we first construct the density functions of x in a proper

way, then we determine the generalized polynomial-chaos bases of x and a proper

Gauss quadrature rule based on the obtained density functions. With the obtained

cumulative density function, random samples of x could be easily obtained for higher-

level Monte Carlo-based simulation, however such task is not the focus of this paper.

Our proposed framework consists of the following steps.

• Step 1. UseN Monte Carlo samples (or readily available measurement/simulation
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data) to obtain the discrete cumulative density function curve of x̂ = f(~ξ). Since

f(~ξ) is a surrogate model, this step can be extremely efficient.

• Step 2. Let δ > 0 be a small threshold value, x̂min and x̂max be the minimum

and maximum values of x̂ from the Monte Carlo analysis (or available data),

respectively. We set a=x̂min − δ, b=x̂max + δ − a, then N samples of x in the

interval (0, 1) are obtained by the linear transformation (7.2). The obtained

samples provide a discrete cumulative density function for x.

• Step 3. From the obtained cumulative density function curve of x, pick n ≪
N points (xi, yi) for i = 1, · · · , n. Here xi denotes the value of x, and yi

the corresponding cumulative density function value. The data are monotone:

xi < xi+1 and 0 = y1 ≤ · · · ≤ yn = 1.

• Step 4. Use a monotone interpolation algorithm in Section 7.2 to construct a

closed-form function p(x) to approximate the cumulative density function of x.

• Step 5. Compute the first-order derivative of p(x) and use it as a closed-form

approximation to ρ(x).

• Step 6. With the obtained ρ(x), we utilize the procedures in Section 7.3 to con-

struct the generalized polynomial-chaos basis functions and Gauss quadrature

points/weights for x.

Many surrogate models are described by truncated generalized polynomial chaos

expansions. The cost of evaluating such models may increase dramatically when

the lower-level parameters ~ξ have a high dimensionality (which may occasionally

happen), although the surrogate model evaluation is still much faster than the detailed

simulation. Fortunately, in practical high-dimensional stochastic problems, normally

only a small number of parameters are important to the output and most cross terms

will vanish [88, 89, 164]. Consequently, a highly sparse generalized polynomial chaos

expansion can be utilized for fast evaluation. Furthermore, when the coupling between

the random parameters are weak, quasi-Monte Carlo [165] can further speed up the

surrogate model evaluation.
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In Step 3, we first select (x1, y1) = (0, 0) and (xn, yn) = (1, 1). The n data points

are selected such that

|xi+1 − xi| ≤
1

m
and |yi+1 − yi| ≤

1

m
, (7.4)

where m is an integer used to control n. This constraint ensures that the interpolation

points are selected properly such that the behavior around the peak of ρ(x) is well

captured. In practical implementation, for k = 2, · · · , n − 1, the point (xk, yk) is

selected from the cumulative density function curve subject to the following criteria:

√

(yk−1 − yk)2 + (xk−1 − xk)
2 ≈ 1

m
. (7.5)

For x /∈ [x1, xn], we set ρ(x)=0. This treatment introduces some errors in the tail

regions. Approximating the tail regions is non-trivial, but such errors may be ignored

if rare failure events are not a major concern (e.g., in the yield analysis of some

analog/RF circuits).

Remark 3.1: Similar to standard stochastic spectral simulators [4, 34–36, 40, 41,

54–57,93,109,166], this paper assumes that x̂i’s are mutually independent. It is more

difficult to handle correlated and non-Gaussian random inputs. Not only is it difficult

to construct the density functions, but also it is hard to construct the basis functions

even if the multivariate density function is given [42, 47]. How to handle correlated

non-Gaussian random inputs remains an open and important topic in uncertainty

quantification [42]. Some of our progress in this direction will be reported in [167].

The most important parts of our algorithm are Step 4 and Step 6. In Section 7.2

we will show how we guarantee that the obtained density functions are physically

consistent. Step 6 will be detailed in Section 7.3, with emphasis on an efficient

analytical implementation.
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7.2 Implementation of the Density Estimator

This section presents the numerical implementation of our proposed density estima-

tion. Our implementation is based on two monotone interpolation techniques, which

are well studied in the mathematical community but have not been applied to un-

certainty quantification. Since we approximate the cumulative density function p(x)

in the interval x ∈ [x1, xn], in both methods we set p(x) = y1 = 0 for x < x1 and

p(x) = yn = 1 for x > xn, respectively.

7.2.1 Method 1: Piecewise Cubic Interpolation

Our first implementation uses a piecewise cubic interpolation [156, 157]. With the

monotone data from Step 3 of Section 7.1, we construct p(x) as a cubic polynomial:

p(x) = c1k + c2k(x− xk) + c3k(x− xk)
2 + c4k(x− xk)

3 (7.6)

for x ∈ [xk, xk+1], 0 < k < n. If yk=yk+1, we simply set c1k=yk and c2k=c
3
k=c

4
k= 0.

Otherwise, the coefficients are selected according to the following formula [157]

c1k = yk, c2k = ẏk, c
3
k =

sk − ẏk+1 − 2ẏk
∆xk

, c4k =
2sk − ẏk+1 − ẏk

(∆xk)
2 (7.7)

where ∆xk=xk+1−xk, sk=yk+1−yk
∆xk

. This formula ensures that p(x) and p′(x) are con-

tinuous, p(xk) = yk and p′(xk) = ẏk. Here p′(x) denotes the 1st-order derivative of

p(x).

The key of this implementation is how to compute ẏk such that the interpolation

is accurate and p(x) is non-decreasing. The value of ẏk is decided by two steps. First,

we compute the first-order derivative ẏ(xk) by a parabolic method:

ẏ(xk) =



























s1 (2∆x1 +∆x2)− s2∆x1
x3 − x1

, if k = 1

sn−1 (2∆xn−1 +∆xn−2)− sn−2∆xn−1

xn − xn−2

, if k = n

sk∆xk−1 + sk−1∆xk
xk+1 − xk−1

, if 2 < k < n− 1.

(7.8)
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Algorithm 4 piecewise cubic density estimation

1: Evaluate the model (7.1) to obtain N samples of x̂;
2: Shift and scale x̂ to obtain N samples for x;
3: Pick n data points (xk, yk), under constraint (7.4);
4: Calculate ẏ(xk) using the parabolic method (7.8);
5: for k = 1, · · · , n do
6: if yk = yk+1, set c1k=yk and c2k=c

3
k=c

4
k= 0;

7: else
8: Compute ẏk according to (7.9);
9: Compute the coefficients in (7.7).

10: end
11: end for

This parabolic method has a 2nd-order accuracy [157]. Second, ẏk is obtained by

perturbing ẏ(xk) (if necessary) to enforce the monotonicity of p(x). The monotonicity

of p(x) is equivalent to p′(x) ≥ 0, which is a 2nd-order inequality. By solving this

inequality, a feasible region for ẏk, denoted by A, is provided in [156]. Occasionally

we need to project ẏ(xk) onto A to get ẏk if ẏ(xk) /∈ A. In practice, we use the simpler

projection method suggested by [157]:

ẏk =







min
(

max (0, ẏ(xk)) , 3s
k
min

)

, if sksk−1 > 0

0, if sksk−1 = 0
(7.9)

with s0=s1, sn=sn−1 and skmin=min(sk, sk−1). The above procedure projects ẏ(xk)

onto a subset of A, and thus the monotonicity of p(x) is guaranteed.

Once p(x) is constructed, the probability density function of x can be obtained by

ρ(x) = p′(x) = c2k + 2c3k(x− xk) + 3c4k(x− xk)
2 (7.10)

for xk≤ x≤ xk+1. Note that for x /∈ [x1, xn], p
′(x) = 0.

Calculating p′(x) may amplify the interpolation errors. However, the error is

acceptable since the constructed p(x) is smooth enough and p′(x) is continuous. The

pseudo codes of Algorithm 4 summarize the steps of this approach.
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7.2.2 Method 2: Piecewise Rational Quadratic Interpolation

Our second implementation is based on a piecewise rational quadratic interpola-

tion [158,159]. In this implementation, we approximate the cumulative density func-

tion of x by

p(x) =
N(x)

D(x)
=
α1
k + α2

kx+ α3
kx

2

β1
k + β2

kx+ β3
kx

2
(7.11)

for x ∈ [xk, xk+1]. The coefficients are selected by the following method: when

xk = xk+1, we set α1
k = yk, β

1
k = 1 and all other coefficients to zero; otherwise,

the coefficients are decided according to the formula

α1
k = yk+1x

2
k − wkxkxk+1 + ykx

2
k+1,

α2
k = wk(xk + xk+1)− 2yk+1xk − 2ykxk+1, α

3
k = yk+1 − wk + yk,

β1
k = x2k − vkxkxk+1 + x2k+1, β

2
k = vk(xk + xk+1)− 2xk − 2xk+1, β

3
k = 2− vk,

with wk =
yk+1ẏk + ykẏk+1

sk
and vk =

ẏk + ẏk+1

sk
(7.12)

where sk is defined the same as in piecewise cubic interpolation. In this interpolation

scheme, the sufficient and necessary condition for the monotonicity of p(x) is very

simple: ẏk ≥ 0. In order to satisfy this requirement, the slope ẏk is approximated by

the geometric mean

ẏk =



















(s1)
x3−x1
x3−x2 (s3,1)

x1−x2
x3−x2 , if k = 1

(sn−1)
xn−xn−2

xn−1−xn−2 (sn,n−2)
xn−1−xn

xn−1−xn−2 , if k = n

(sk−1)
xk+1−xk

xk+1−xk−1 (sk)
xk−xk−1

xk+1−xk−1 , if 1 < k < n

(7.13)

with sk1,k2 =
yk1−yk2
xk1

−xk2
. Similarly, the probability density function of x can be approxi-

mated by

ρ(x) = p′(x) =
N ′(x)D(x)−D′(x)N(x)

D2(x)
, (7.14)

for x ∈ [xk, xk+1].

Note that in piecewise cubic interpolation, a projection procedure is not required,

since the monotonicity of p(x) is automatically guaranteed. The pseudo codes of this
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Algorithm 5 piecewise rational quadratic density estimation

1: Evaluate the model (7.1) to obtain N samples of x;
2: Shift and scale x̂ to obtain N samples for x;
3: Pick n data points (xk, yk), under constraint (7.4);
4: for k = 1, · · · , n do
5: Calculate ẏk using the formula in (7.13);
6: if yk = yk+1

7: set α1
k = yk, β

1
k = 1 and other coefficients to zero;

8: else
9: compute the coefficients of N(x) and D(x) using (7.12).

10: end
11: end for

density estimation method are provided in Algorithm 5.

7.2.3 Properties of p(x)

It is straightforward to show that the obtained density functions are physically con-

sistent: 1) p(x) is differentiable, and thus its derivative p′(x) always exists; 2) p(x)

is monotonically increasing from 0 to 1, and the probability density function ρ(x) is

non-negative.

We can easily draw a random sample from the obtained p(x). Let y ∈ [0, 1]

be a sample from a uniform distribution, then a sample of x can be obtained by

solving p(x) = y in the interval y ∈ [yk, yk+1]. This procedure only requires com-

puting the roots of a cubic (or quadratic) polynomials, resulting in a unique solution

x ∈ [xk, xk+1]. This property is very useful in uncertainty quantification. Not only

are random samples used in Monte Carlo simulators, but also they can be used in

stochastic spectral methods. Recently, compressed sensing has been applied to high-

dimensional stochastic problems [88,89,164]. In compressed sensing, random samples

are normally used to enhance the restricted isometry property of the dictionary ma-

trix [92].

Finally, it becomes easy to determine the generalized polynomial-chaos basis func-

tions and a proper quadrature rule for x due to the special form of ρ(x). This issue

will be discussed in Section 7.3.

131



Remark 4.1: Our proposed density estimator only requires some interpolation

points from a discrete cumulative density function curve. The interpolation points

actually can be obtained by any appropriate approach. For example, kernel density

estimation will be a good choice if we know a proper kernel function and a good

smoothing parameter based on a-priori knowledge. When the surrogate model is a

linear quadratic function of Gaussian variables, we may first employ asymptotic prob-

ability extraction [2] to generate a physically inconsistent cumulative density function.

After that, some monotone data points (with yi’s bounded by 0 and 1) can be selected

to generate a piecewise cubic or piecewise rational quadratic cumulative density func-

tion. The new cumulative density function and probability density function become

physically consistent and can be reused in a stochastic simulator.

7.3 Determine Basis Functions and Gauss Quadra-

ture Rules

This section shows how to calculate the generalized polynomial-chaos bases and the

Gauss quadrature points/weights of x based on the obtained density function.

7.3.1 Proposed Implementation

One of the many usages of our density estimator is to fast compute a set of gen-

eralized polynomial-chaos basis functions and Gauss quadrature points/weights by

analytically computing the integrals in (2.4). Let π2
i (x) =

2i
∑

k=0

τi,kx
k, then we have

∫

R

xπ2
i (x)ρ(x)dx =

2i
∑

k=0

τi,kMk+1,
∫

R

π2
i (x)ρ(x)dx =

2i
∑

k=0

τi,kMk (7.15)
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where Mk denotes the k-th statistical moments of x. By exploiting the special form

of our obtained density function, the statistical moments can be computed as

Mk =

+∞
∫

−∞

xkρ(x)dx =

xn
∫

x1

xkρ(x)dx =
n−1
∑

j=1

Ij,k (7.16)

where Ij,k denotes the integral in the j-th piece:

Ij,k =

xj+1
∫

xj

xkρ(x)dx = Fj,k(xj+1)− Fj,k(xj). (7.17)

Here Fj,k(x) is a continuous analytical function under the constraint d
dt
Fj,k(x) =

xkρ(x) for x ∈ [xj , xj+1]. The key problem of our method is to construct Fj,k(x).

When ρ(x) is obtained from Alg. 4 or Alg. alg:mprq, we can easily obtain the closed

form of Fj,k(x), as will be elaborated in Section 7.3.2 and Section 7.3.3.

Remark 5.1: This paper directly applies (2.4) to compute the recurrence parame-

ters γi and κi. As suggested by [46], modified Chebyshev algorithm [168] can improve

the numerical stability when constructing high-order polynomials. Modified Cheby-

shev algorithm indirectly computes γi and κi by first evaluating a set of modified

moments. Again, if we employ the ρ(x) obtained from our proposed density esti-

mators, then the calculation of modified moments can also be done analytically to

further improve the accuracy and numerical stability.

7.3.2 Construct Fj,k(x) using the Density Function from Alg. 4

When ρ(x) is constructed by Alg. 4, xkρ(x) is a polynomial function of at most degree

k + 2 inside the interval [xj, xj+1]. Therefore, the analytical form of Fj,k(x) is

Fj,k(x) = aj,kx
k+3 + bj,kx

k+2 + cj,kx
k+1 (7.18)

with

aj,k =
3c4j
k+3

, bj,k =
2c3j−6c4jxj

k+2
, cj,k =

c2j−2c3jxj+3c4jx
2
j

k+1
.
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7.3.3 Construct Fj,k(x) using the Density Function from Alg. 5

If ρ(x) is constructed by Alg. 5, for any x ∈ [xj, xj+1] we rewrite xkρ(x) as follows

xkρ(x) = xk[N ′(x)D(x)−D′(x)N(x)]
D2(x)

= d
dx

(

xkN(x)
D(x)

)

− kxk−1N(x)
D(x)

.

Therefore, Fj,k(x) can be selected as

Fj,k(x) =
xkN(x)

D(x)
− F̃j,k(x), with

d

dx
F̃j,k(x) =

kxk−1N(x)

D(x)
.

In order to obtain F̃j,k(x), we perform a long division:

kxk−1N(x)

D(x)
= P̃j,k(x) +

R̃j,k(x)

D(x)
(7.19)

where P̃j,k(x) and R̃j,k(x) are both polynomial functions, and R̃j,k(x) has a lower

degree than D(x). Consequently,

F̃j,k(x) = F̃ 1
j,k(x) + F̃ 2

j,k(x) (7.20)

where F̃ 1
j,k(x) and F̃ 2

j,k(x) are the integrals of P̃j,k(x) and
R̃j,k(x)

D(x)
, respectively. It is

trivial to obtain F̃ 1
j,k(x) since P̃j,k(x) is a polynomial function.

The closed form of F̃ 2
j,k(x) is decided according to the coefficients of D(x) and

R̃j,k(x), as is summarized below.

Case 1: if β3
j 6= 0, then R̃j,k(x) = r̃0j,k + r̃1j,kx. Let us define ∆j := 4β1

jβ
3
j − β2

j ,

then we can select F̃ 2
j,k(x) according to the formula in (7.21).

F̃ 2
j,k(x) =























r̃1
j,k

2β3
j

ln
∣

∣β3
jx

2 + β2
jx+ β1

j

∣

∣+
2β3

j r̃
0
j,k

−β2
j r̃

1
j,k

β3
j

√
∆j

arctan
2β3

j x+β2
j√

∆j

, if ∆j > 0

r̃1
j,k

2β3
j

ln
∣

∣β3
jx

2 + β2
jx+ β1

j

∣

∣− 2β3
j r̃

0
j,k

−β2
j r̃

1
j,k

β3
j

√
−∆j

arctan
2β3

j x+β2
j√

−∆j

, if ∆j < 0

r̃1
j,k

2β3
j

ln
∣

∣β3
jx

2 + β2
jx+ β1

j

∣

∣− 2β3
j r̃

0
j,k

−β2
j r̃

1
j,k

β3
j (2β3

j x+β2
j )
, if ∆j = 0

(7.21)

Case 2: if β3
j = 0 and β2

j 6= 0, then R̃j,k(x) = r̃0j,k is a constant. In this case, we
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select

F̃ 2
j,k(x) =

r̃0j,k
β2
j

ln
∣

∣β2
jx+ β1

j

∣

∣ . (7.22)

Case 3: if β3
j = β2

j = 0, then R̃j,k(x) = 0. In this case we set F̃ 2
j,k(x) = 0.

Remark 5.2: Occasionally, the projection procedure (7.9) in Alg. 4 may cause extra

errors at the end points of some intervals. If this problem happens we recommend to

use Alg. 5. On the other hand, if high-order basis functions is required we recommend

Alg. 4, since the moment computation with the density from Alg. 5 is numerically

less stable (due to the long-term division and the operations in (7.21).

7.4 Numerical Examples

This section presents the numerical results on a synthetic example and the statistical

surrogate models from two practical analog/RF circuits. The surrogate models of

these practical circuits are extracted from transistor-level simulation using the fast

stochastic circuit simulator developed in [34–36]. All experiments are run in Matlab

on a 2.4GHz 4-GB RAM laptop.

In the following experiments, we use the density functions from kernel density esti-

mation as the “reference solution" because: 1) as a standard technique, kernel density

estimation is most widely used in mathematics and engineering; 2) kernel density es-

timation guarantees that the generated probability density function is non-negative,

whereas asymptotic probability extraction cannot; 3) Gaussian kernel function seems

to be a good choice for the examples in this paper. However, it is worth noting

that the density functions from kernel density estimation are not efficient for reuse

in higher-level stochastic simulation. We plot the density functions of x̂ (the original

random input) instead of x (the new random input after a linear transformation) since

the original one is physically more intuitive. In order to verify the accuracy of the

computed generalized polynomial-chaos bases and Gauss quadrature points/weights,
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we define a symmetric matrix Vn̂+1 ∈ R
(n̂+1)×(n̂+1), the (i, j) entry of which is

vi,j =
n̂+1
∑

k=1

wkφi−1

(

xk
)

φj−1

(

xk
)

.

Here xk and and wk are the computed k-th Gauss quadrature point and weight,

respectively. Therefore vi,j approximates the inner product of φi−1(x) and φj−1(x),

defined as
∫

R

φi−1 (x)φj−1 (x) ρ(x)dx, by n̂ + 1 quadrature points. Let In̂+1 be an

identity matrix, then we define an error:

ǫ = ||In̂+1 − Vn̂+1||∞ (7.23)

which is close to zero when our constructed basis functions and Gauss-quadrature

points/weights are accurate enough.

7.4.1 Synthetic Example

As a demonstration, we first consider the following synthetic example with four ran-

dom parameters ~ξ = [ξ1, · · · , ξ4]:

x̂ = f(~ξ) = ξ1 + 5 exp(0.52ξ2) + 0.3
√

2.1× |ξ4|+ sin (ξ3) cos (3.91ξ4)

where ξ1, ξ2 and ξ3 are all standard Gaussian random variables, and ξ4 has a uniform

distribution in the interval [−0.5, 0.5]. This model is strongly nonlinear with respect

to ~ξ due to the exponential, triangular and square root functions. It is also non-

smooth at ξ4 = 0 due to the third term in the model. This model is designed to

challenge our algorithm. Using this surrogate model, 106 samples of x are easily

created to generate the cumulative density function curve within 1 second.

Density Estimation: we set m = 45 and select 74 data points from the obtained

cumulative density function curve using the constraint in (7.5). After that, both

Alg. 4 and Alg. 5 are applied to generate p(x) and ρ(x) as approximations to the

cumulative density function and probability density function of x, respectively. The
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Figure 7-2: Cumulative density function (CDF) and probability density function
(PDF) approximation of x̂ for the synthetic example. The reference PDF is generated
by kernel density estimation (KDE).

CPU times cost by our proposed density estimators are in millisecond scale, since

only simple algebraic operations are required. After scaling by (7.3), the cumulative

density function and probability density function of the original random input x̂

(p̂(x̂) and ρ̂(x̂), respectively) from both algorithms are compared with the original

cumulative density function and probability density function in Fig. 7-2. Clearly,

p̂(x̂) is indistinguishable with the original cumulative density function (from Monte

Carlo simulation); and ρ̂(x̂) overlaps with the original probability density function

(estimated by kernel density estimation using Gaussian kernels). Note that the results

from kernel density estimation are not efficient for reuse in higher-level stochastic

simulation, since all Monte Carlo samples are used as parameters of the resulting

density function.

It is clearly shown that the generated p̂(x̂) [and thus p(x)] is monotonically in-

creasing from 0 to 1, and that the generated ρ̂(x̂) [and thus ρ(x)] is non-negative.
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Figure 7-3: Computed generalized polynomial-chaos basis functions φk(x) (k =
0, · · · , 4) for the synthetic example. (a) uses the probability density function from
Alg. 4, and (b) uses the probability density function from Alg. 5.

Table 7.1: Computed Gauss quadrature points and weights for the synthetic example.

with ρ(x) from Alg. 4 with ρ(x) from Alg. 5
xk wk xk wk

0.082620 0.311811 0.084055 0.332478
0.142565 0.589727 0.144718 0.576328
0.249409 0.096115 0.252980 0.089027
0.458799 0.002333 0.463207 0.002150
0.837187 0.000016 0.835698 0.000016

Therefore, the obtained density functions are physically consistent.

Basis Function: Using the obtained density functions and the proposed imple-

mentation in Section 7.3, a set of orthonormal polynomials φk(x)’s are constructed as

the basis functions at the cost of milliseconds. Fig. 7-3 show the first five generalized

polynomial-chaos basis functions. Note that although the computed basis functions

from two methods are graphically indistinguishable, they are actually slightly different

since Alg. 4 and Alg. 5 generate different representations for ρ(x).

Gauss Quadrature Rule: setting n̂ = 4, five Gauss quadrature points and weights

are generated using the method presented in Section 7.3. Table 7.1 shows the re-

sults from two kinds of approximated density functions. Clearly, since the probabil-

ity density functions from Alg. 4 and Alg. 5 are different, the resulting quadrature

points/weights are also slightly different. The results from both probability density
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Figure 7-4: Cumulative density function (CDF) and probability density function
(PDF) approximation for the frequency of the Colpitts oscillator. The reference PDF
is generated by kernel density estimation (KDE).

functions are very accurate. Using the probability density function from Alg. 4, we

have ǫ = 2.24 × 10−14, and the error (7.23) is 7.57 × 10−15 if ρ(x) from Alg. 5 is

employed.

7.4.2 Colpitts Oscillator

We now test our proposed algorithm on a more practical example, the Colpitts oscil-

lator circuit shown in Fig. 5-3. In this circuit, L1=150 +N (0, 9) nH and C1=100 +

U(−10, 10) pF are random variables with Gaussian and uniform distributions, respec-

tively. We construct a surrogate model using generalized polynomial chaos expansions

and the stochastic shooting Newton solver in [36]. The oscillation frequency fosc is
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expressed as

x̂ = fosc = f(~ξ) =
1

10
∑

k=1

Tkψk(~ξ)

(7.24)

where the denominator is a 3rd-order generalized polynomial chaos representation

for the period of the oscillator, with ψk(~ξ) being the k-th multivariate generalized

polynomial-chaos basis function of ~ξ and Tk the corresponding coefficient. Although

the period is a polynomial function of ~ξ, the frequency is not, due to the inverse

operation. In order to extract the cumulative density function curve, 5× 105 samples

are utilized to evaluate the surrogate model (7.24) by Monte Carlo, which costs 225

seconds of CPU times on our Matlab platform.

Density Estimation: 106 data points on the obtained cumulative density function

curve are used to construct p(x) and ρ(x), which costs only several milliseconds. Af-

ter scaling the constructed closed-form cumulative density functions and probability

density functions from Alg. 4 and Alg. 5, the approximated density functions of the

oscillation frequency are compared with the Monte Carlo results in Fig. 7-4. The

constructed cumulative density functions by both methods are graphically indistin-

guishable with the result from Monte Carlo. The bottom plots in Fig. 7-4 also show a

good match between our obtained ρ̂(x̂) with the result from kernel density estimation.

Again, important properties of the density functions (i.e., monotonicity and bound-

edness of the cumulative density function, and non-negativeness of the probability

density function) are well preserved by our proposed density estimation algorithms.

Basis Function: Using the obtained density functions and the proposed imple-

mentation in Section 7.3, a set of orthonormal polynomials φk(x)’s are constructed

as the basis functions at the cost of milliseconds. Fig. 7-5 shows several generalized

polynomial-chaos basis functions of x. Again, the basis functions resulting from our

two density estimation implementations are only slightly different.

Gauss Quadrature Rule: the computed five Gauss quadrature points and weights

are shown in Table 7.2. Again the results from two density estimations are slightly

different. The results from both probability density functions are very accurate. Using

ρ(x) from Alg. 4, we have ǫ = 1.3× 10−13, and the error is 1.45× 10−13 if we use ρ(x)
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Figure 7-5: Computed generalized polynomial-chaos basis functions φk(x) (k =
0, · · · , 4) for the Colpitts oscillator. (a) uses the probability density function from
Alg. 4, and (b) uses the probability density function from Alg. 5.

Table 7.2: Computed Gauss quadrature points and weights for the Colpitts oscillator.

with ρ(x) from Alg. 4 with ρ(x) from Alg. 5
xk wk xk wk

0.170086 0.032910 0.170935 0.032456
0.309764 0.293256 0.310016 0.292640
0.469034 0.441303 0.468658 0.439710
0.632232 0.217359 0.631249 0.218274
0.788035 0.016171 0.786226 0.016820

from Alg. 5.

7.4.3 Low-Noise Amplifier

In this example we consider the statistical behavior of the total harmonic distortion

at the output node of the low-noise amplifier shown in Fig. 4-7. The device ratios of

the MOSFETs are W1/L1=W2/L2=500/0.35 and W3/L3=50/0.35. The linear com-

ponents are R1=50Ω, R2=2 kΩ, C1=10 pF, CL=0.5 pF, L1=20 nH and L3=7 nH.

Four random parameters are introduced to describe the uncertainties: ξ1 and ξ2 are

standard Gaussian variables, ξ3 and ξ4 are standard uniform-distribution parameters.

These random parameters are mapped to the physical parameters as follows: temper-

ature T=300 + 40ξ1 K influences transistor threshold voltage; VT=0.4238 + 0.1ξ2 V
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Figure 7-6: Cumulative density function (CDF) and probability density function
(PDF) for the total harmonic distortion (THD) of the low-noise amplifier. The ref-
erence PDF is generated by kernel density estimation (KDE).

represents the threshold voltage under zero Vbs; R3=0.9+0.2ξ3 kΩ and L2=0.8+1.2ξ4

nH. The supply voltage is Vdd=1.5 V, and the periodic input is Vin = 0.1sin(4π×108t)

V.

The surrogate model for total harmonic distortion analysis is constructed by a

numerical scheme as follows. First, the parameter-dependent periodic steady-state

solution at the output is solved by the non-Monte Carlo simulator in [36], and is

expressed by a truncated generalized polynomial chaos representation with K basis

functions:

Vout(~ξ, t) =
K
∑

k=1

vk(t)ψk(~ξ)

where vk(t) is the time-dependent coefficient of the generalized polynomial chaos

expansion for the periodic steady-state solution and is actually solved at a set of time

points during the entire period [0, T ]. Next, vk(t) is expressed by a truncated Fourier
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series:

vk(t) =
a0k
2

+
J
∑

j=1

(

ajk cos(jωt) + bjk sin(jωt)
)

with ω = 2π
T

. The coefficients ajk and bjk

ajk =
2

T

T
∫

0

vk(t) cos(jωt)dt, b
j
k =

2

T

T
∫

0

vk(t) sin(jωt)dt

are computed by a Trapezoidal integration along the time axis. Finally, the parameter-

dependent total harmonic distortion is obtained as

x̂ = THD = f(~ξ) =

√

√

√

√

J
∑

j=2

[

(aj(~ξ))
2
+(bj(~ξ))

2
]

(a1(~ξ))
2
+(b1(~ξ))

2

with aj(~ξ) =
K
∑

k=1

ajkφk(~ξ), bj(~ξ) =
K
∑

k=1

ajkφk(~ξ).

(7.25)

We set J = 5 in the Fourier expansion, which is accurate enough for this low-noise

amplifier. We use a 3rd-order generalized polynomial chaos expansion, leading to

K=35. This surrogate model is evaluated by Monte Carlo with 5 × 105 samples at

the cost of 330 seconds.

Density Estimation: 114 points are selected from the obtained cumulative density

function curve to generate p(x) and ρ(x) by Alg. 4 and Alg. 5, respectively, which

costs only several milliseconds. After scaling, Fig. 7-6 shows the closed-form density

functions for the total harmonic distortion of this low-noise amplifier, which matches

the results from Monte Carlo simulation very well. The generated p(x) monotonically

increases from 0 to 1, and ρ(x) is non-negative. Therefore, the obtained density

functions are physically consistent.

Basis Function: Using the obtained density functions, several orthonormal poly-

nomials of x are constructed. Fig. 7-7 shows the first five basis functions of x. Again,

the basis functions resulting from our two density estimation implementations look

similar since the density functions from both methods are only slightly different.

Gauss Quadrature Rule: Five Gauss quadrature points and weights are computed
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Figure 7-7: Computed generalized polynomial-chaos basis functions φk(x) (k =
0, · · · , 4) for the low-noise amplifier. (a) uses the probability density function from
Alg. 4, and (b) uses the probability density function from Alg. 5.

Table 7.3: Computed Gauss quadrature points and weights for the low-noise amplifier.

with ρ(x) from Alg. 4 with ρ(x) from Alg. 5
xk wk xk wk

0.131542 0.056766 0.140381 0.073309
0.251826 0.442773 0.261373 0.470691
0.385311 0.4432588 0.395704 0.400100
0.550101 0.066816 0.561873 0.055096
0.785055 0.001056 0.798122 0.000803

and listed in Table 7.3. Again the results from two density estimations are slightly

different due to the employment of different density estimators. When the density

functions from piecewise cubic and piecewise rational quadratic interpolations are

used, the the errors defined in (7.23) are 3.11× 10−14 and 4.34× 10−14, respectively.

7.4.4 Comparison with Asymptotic Probability Extraction

Finally we test our examples by the previous asymptotic probability extraction algo-

rithm [2,3]. Since our surrogate models are not in linear quadratic forms, we slightly

modify asymptotic probability extraction: as done in [169] we use Monte Carlo to

compute the statistical moments. All other procedures are exactly the same with

those in [2, 3].
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Figure 7-8: Probability density functions extracted by asymptotic probability extrac-
tion (APEX) [2,3], compared with the results from kernel density estimation (KDE).
Left column: the synthetic example. Central column: frequency of the Colpitts os-
cillator. Right column: total harmonic distortion (THD) of the low-noise amplifier.
(a)-(c): with 10 moments; (d)-(f): with 15 moments; (g)-(i): with 17 moments.

As shown in Fig. 7-8, asymptotic probability extraction produces some negative

probability density function values for the synthetic example and the Colpitts oscil-

lator. The probability density functions of the low-noise amplifier are also slightly

below 0 in the tail regions, which is not clearly visible in the plots. Compared with the

results from our proposed algorithms (that are non-negative and graphically indistin-

guishable with the original probability density functions), the results from asymptotic

probability extraction have larger errors. As suggested by [2,3], we increase the order

of moment matching to 15, hoping to produce non-negative results. Unfortunately,

Fig. 7-8 (d) and (e) show that negative probability density function values still ap-
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pear, although the accuracy is improved around the peaks. Further increasing the

order to 17, we observe that some positive poles are generated by asymptotic wave-

form evaluation [170]. Such positive poles make the computed probability density

functions unbounded and far from the original ones, as demonstrated by Fig. 7-8 (g)

& (h). For the low-noise amplifier, the approximated probability density function

curve also becomes unbounded once we increase the order of moment matching to 20,

which is not shown in the plot.

These undesirable phenomenon of asymptotic probability extraction is due to

inexact moment computation and the inherent numerical instability of asymptotic

waveform evaluation [170]. Although it is possible to compute the statistical mo-

ments in some other ways (e.g., using maximum likelihood [82] or point estimation

method [139]), the shortcomings of asymptotic waveform evaluation (i.e., numerical

instability and causing negative impulse response for a linear system) cannot be over-

come. Because the density functions from asymptotic probability extraction may be

physically inconsistent, they cannot be reused in a stochastic simulator (otherwise

non-physical results may be obtained). Since the obtained probability density func-

tion is not guaranteed non-negative, the computed κi in the three-term relation (2.4)

may become negative, whereas (2.4) implies that κi should always be non-negative.

7.5 Limitations and Possible Solutions

7.5.1 Lack of Accuracy for Tail Approximation

In some applications (e.g., SRAM cell design), users require a highly accurate de-

scription about the density function in the tail region. Our algorithm does not work

for such applications because of the following reasons.

1. In order to approximate the tail region, a lot of samples should be drawn, leading

to a high computational cost.

2. Our algorithm does not provide enough accuracy. In SRAM analysis, it is very

common that the estimated failure probability should be below 10−6. Such high
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accuracy cannot be reached by our interpolation-based algorithms.

3. Our algorithm uses a surrogate model to draw samples, the accuracy of a sur-

rogate model is typically not enough for tail analysis.

7.5.2 Multiple Correlated Outputs of Interests

The proposed algorithm is designed to approximate a scalar output of interest. When

multiple correlated outputs of interest are required for high-level uncertainty quan-

tification, we may need to calculate a joint density function which cannot be easily

captured by the proposed piecewise interpolation. In order to solve this problem,

other density estimation techniques may be exploited, such as maximum entropy or

Gaussian mixture modeling.
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Chapter 8

Conclusions and Future Work

8.1 Summary of Results

In this thesis, we have developed a set of algorithms to efficiently quantify the para-

metric uncertainties in nano-scale integrated circuits and microelectromechanical sys-

tems (MEMS). Our algorithms have shown significant speedup (up to 103×) over

state-of-the-art circuit/MEMS simulators.

The main results of this thesis are summarized below.

Chapter 4 has developed an intrusive-type stochastic solver, named stochastic test-

ing, to quantify the uncertainties in transistor-level circuit simulation. With general-

ized polynomial-chaos expansions, this simulator can handle both Gaussian and non-

Gaussian variations. Compared with stochastic-collocation and stochastic-Galerkin

implementations, our approach can simultaneously allow decoupled numerical simu-

lation and adaptive step size control. In addition, multivariate integral calculation

is avoided in the simulator. Such properties make the proposed method hundreds

to thousands of times faster over Monte Carlo, and tens to hundreds of times faster

than stochastic Galerkin. The speedup of our simulator over stochastic collocation is

caused by two factors: 1) a smaller number of samples required to assemble the de-

terministic equation; and 2) adaptive time stepping in the intrusive stochastic testing

simulator. The overall speedup factor of stochastic testing over stochastic collocation

is normally case dependent. Various simulations (e.g., DC, AC and transient analysis)
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have been performed on extensive analog, digital and radio-frequency (RF) circuits,

demonstrating the effectiveness of our proposed algorithm.

Chapter 5 has further developed an intrusive periodic steady-state simulator for

the uncertainty quantification of analog/RF circuits (including both forced circuits

and oscillators). The main advantage of our proposed method is that the Jacobian can

be decoupled to accelerate numerical computations. Numerical results show that our

approach obtains results consistent with Monte Carlo simulation, with 2∼3 orders

of magnitude speedup. Our method is significantly faster over existing stochastic

Galerkin-based periodic steady-state solver, and the speedup factor is expected to be

more significant as the circuit size and the number of basis functions increase.

Chapter 6 has developed a hierarchical uncertainty quantification algorithm to

simulate high-dimensional electronic systems. The basic idea is to perform non-

Monte-Carlo uncertainty quantification at different levels. The surrogate models ob-

tained at the low-level are used to recompute basis functions and Gauss-quadrature

rules for high-level simulation. This algorithm has been demonstrated by a low-

dimensional example, showing 250× speedup. A framework to accelerate the hierar-

chical uncertainty quantification of stochastic circuits/systems with high-dimensional

subsystems has been further proposed. We have developed a sparse stochastic testing

simulator based on analysis of variance (ANOVA) to accelerate the low-level simula-

tion, and a tensor-based technique for handling high-dimensional surrogate models at

the high level. Both algorithms have a linear (or near-linear) complexity with respect

to the parameter dimensionality. Our simulator has been tested on an oscillator cir-

cuit with four MEMS capacitors and totally 184 random parameters, achieving highly

accurate results at the cost of 10-min CPU time in MATLAB. In this example, our

method is over 92× faster than the hierarchical Monte Carlo method developed in [1],

and is about 14× faster than the method that uses ANOVA-based solver at the low

level and Monte Carlo at the high level.

Chapter 7 has proposed an alternative framework to determine generalized polynomial-

chaos basis functions and Gauss quadrature rules from possibly non-smooth surrogate

models. Starting from a general surrogate model, closed-form density functions have
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been constructed by two monotone interpolation techniques. It has been shown that

the obtained density functions are physically consistent: the cumulative density func-

tion is monotone and bounded by 0 and 1; the probability density function is guaran-

teed non-negative. Such properties are not guaranteed by existing moment-matching

density estimators. By exploiting the special forms of our obtained probability density

functions, generalized polynomial-chaos basis functions and Gauss quadrature rules

have been easily determined, which can be used for higher-level stochastic simulation.

The effectiveness of our proposed algorithms has been verified by several synthetic and

practical circuit examples, showing excellent efficiency (at the cost of milliseconds)

and accuracy (with errors around 10−14). The obtained generalized polynomial-chaos

basis functions and Gauss quadrature points/weights allow standard stochastic spec-

tral methods to efficiently handle surrogate models in a hierarchical simulator.

Some limitations of our work have been pointed out, and some possible improve-

ments have been suggested.

8.2 Future Work

There exist a lot of topics worth further investigation. Below we summarize a few of

them.

Higher Dimensionality. In stochastic spectral methods, the number of total

generalized polynomial-chaos bases increases very fast as the parameter dimensional-

ity d increases. Consequently, the computational cost becomes prohibitively expensive

when d is large. It is worth exploiting the sparsity of the coefficients to reduce the

complexity. Compressed sensing [92] seems effective for behavior modeling [88], but its

efficiency can degrade for simulation problems (since the coefficients of different nodal

voltages and/or branch currents have different sparsity pattens). A dominant singular

vector method has been proposed for high-dimensional linear stochastic problems [12],

yet solving the non-convex optimization is challenging for nonlinear problems. This

idea may be further extended by using the concepts of tensor factorization.

Correlated Non-Gaussian Parameters. In existing literature, the random
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parameters are typically assumed mutually independent, which is not valid for many

practical circuits. Unlike Gaussian variables, correlated non-Gaussian parameters

cannot be easily transformed to independent ones, making the generalized polynomial-

chaos basis construction challenging. A theoretical method has been proposed to deal

with parameters with arbitrary density functions [47], but its numerical implementa-

tion is non-trivial.

Long-Term Integration. In digital integrated circuit simulation, normally de-

signers have to perform a long-time transient simulation. In the applied math com-

munity, it is well known that polynomial-chaos approximation can be inaccurate for

tong-time integration, despite of some improvements [171].

Approximating Non-Smooth Outputs. Generalized polynomial-chaos ap-

proximation can be a good choice if the output of interest is a smooth function of

the random parameters. However, in some cases the output can be a non-smooth

function (e.g., the output voltages of digital logic gates). In order to approximate

such outputs, one may need to partition the parameter space.

Hierarchical Uncertainty Quantification. There are lots of problems worth

investigation in the direction of hierarchical uncertainty quantification. Open prob-

lems include: 1). how to extract a high-dimensional surrogate model such that the

tensor rank is as small as possible (or the tensor rank is below a provided upper

bound)? 2). How to perform non-Monte-Carlo hierarchical uncertainty quantifica-

tion when the outputs of different blocks are correlated? 3). How to perform non-

Monte-Carlo hierarchical uncertainty quantification when yi depends on some varying

variables (e.g., time and frequency)?

Optimization Under Uncertainties. In many engineering problems (e.g., cir-

cuit design, magnetic resonance imaging (MRI) scanner design), designers hope to

optimize an output of interest under some uncertainties. In these cases, a forward

solver can be utilized inside the loop of stochastic optimization or robust optimization

to accelerate the computation. However, the resulting optimization problem may be

non-convex or be of large scale.

Quantifying Other Uncertainties. Besides parametric uncertainties, other
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kinds of uncertainty sources (e.g., numerical errors, model uncertainties, electri-

cal/thermal noise) also need to be considered. How to model such uncertainties

and how to quantify them still seems an open problem.

Inverse Problems. This thesis focuses on forward uncertainty quantification

solvers. However, in many engineering communities inverse problems are of great

interest. In semiconductor process modeling, process modeling experts have some

circuit measurement data and they aim to infer the distribution of some device-level

variations. In power systems, information on some power buses can be collected by

sensors, and people want to calibrate the parameters of a model to better capture the

behavior of a power system. Inverse problems also widely exist in biomedical fields

such as magnetic resonance imaging that infer the tissue structure of a human body

from the received magnetic fields. From the mathematical perspective, many inverse

problems are ill-posed and large-scale and thus they are difficult to solve.
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